The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245250 Decimal expansion of the average value of the Yekutieli-Mandelbrot parameter, that is the average number of maximal subtrees of an ordered binary tree requiring one less register than the whole tree. 2
 3, 3, 4, 1, 2, 6, 6, 9, 4, 0, 7, 2, 4, 7, 3, 0, 4, 7, 1, 8, 8, 9, 3, 4, 8, 8, 6, 0, 2, 5, 4, 7, 3, 4, 3, 6, 2, 0, 2, 6, 3, 1, 7, 6, 2, 4, 5, 6, 0, 0, 1, 6, 8, 9, 8, 7, 8, 3, 1, 7, 9, 6, 9, 3, 4, 9, 9, 1, 8, 5, 9, 6, 5, 2, 3, 3, 5, 1, 6, 3, 2, 3, 3, 4, 2, 4, 4, 4, 1, 9, 7, 2, 4, 3, 7, 1, 4, 6, 7, 3, 5, 7, 2, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 311. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA 2*G/(Pi*log(2))+5/2, where G is Catalan's constant (G ~ 0.915966). EXAMPLE 3.341266940724730471889348860254734362026317624560016898783179693499... MATHEMATICA RealDigits[2*Catalan/(Pi*Log[2])+5/2, 10, 104] // First PROG (PARI) default(realprecision, 100); 2*Catalan/(Pi*log(2))+5/2 \\ G. C. Greubel, Aug 25 2018 (MAGMA) SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R)/(Pi(R)*Log(2))+5/2; // G. C. Greubel, Aug 25 2018 CROSSREFS Cf. A006752. Sequence in context: A082899 A249491 A309888 * A179561 A332518 A062366 Adjacent sequences:  A245247 A245248 A245249 * A245251 A245252 A245253 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jul 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 11:57 EDT 2021. Contains 347689 sequences. (Running on oeis4.)