login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245250
Decimal expansion of the average value of the Yekutieli-Mandelbrot parameter, that is the average number of maximal subtrees of an ordered binary tree requiring one less register than the whole tree.
2
3, 3, 4, 1, 2, 6, 6, 9, 4, 0, 7, 2, 4, 7, 3, 0, 4, 7, 1, 8, 8, 9, 3, 4, 8, 8, 6, 0, 2, 5, 4, 7, 3, 4, 3, 6, 2, 0, 2, 6, 3, 1, 7, 6, 2, 4, 5, 6, 0, 0, 1, 6, 8, 9, 8, 7, 8, 3, 1, 7, 9, 6, 9, 3, 4, 9, 9, 1, 8, 5, 9, 6, 5, 2, 3, 3, 5, 1, 6, 3, 2, 3, 3, 4, 2, 4, 4, 4, 1, 9, 7, 2, 4, 3, 7, 1, 4, 6, 7, 3, 5, 7, 2, 5
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 311.
FORMULA
2*G/(Pi*log(2))+5/2, where G is Catalan's constant (G ~ 0.915966).
EXAMPLE
3.341266940724730471889348860254734362026317624560016898783179693499...
MATHEMATICA
RealDigits[2*Catalan/(Pi*Log[2])+5/2, 10, 104] // First
PROG
(PARI) default(realprecision, 100); 2*Catalan/(Pi*log(2))+5/2 \\ G. C. Greubel, Aug 25 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R)/(Pi(R)*Log(2))+5/2; // G. C. Greubel, Aug 25 2018
CROSSREFS
Cf. A006752.
Sequence in context: A082899 A249491 A309888 * A179561 A332518 A353662
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved