login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245252
Consider a decimal number of k>=2 digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1) and the transform V(x)-> (d_(1)+d(k) mod 10)*10^(k-1) + (d_(k)+d_(k-1) mod 10)*10^(k-2) + (d_(k-1)+d_(k-2) mod 10)*10^(k-3) + … + (d_(2)+d_(1) mod 10). Sequence lists the least primes x that remain primes for n steps under the transform V(x).
2
2, 29, 661, 4289, 24247, 2088221, 4446863
OFFSET
0,1
COMMENTS
V(x) is similar to transform T(x) as defined in A243993.
EXAMPLE
n=0: 2
n=1: 29 -> 11
n=2: 661 -> 727 -> 499
n=3: 4289 -> 3607 -> 967 -> 653
n=4: 24247 -> 96661 -> 5227 -> 2749 -> 1913
n=5: 2088221 -> 3286043 -> 6504647 -> 3154001 -> 4469401 -> 5805341
n=6: 4446863 -> 7880449 -> 6568483 -> 9114221 -> 25643 -> 57107 -> 22817
MAPLE
V:=proc(t) local j, w, x, y; x:=t; y:=[]; while x>0 do
y:=[x mod 10, op(y)]; x:=trunc(x/10); od; x:=(y[nops(y)]+y[1]) mod 10;
for j from 1 to nops(y)-1 do x:=x*10+((y[j]+y[j+1]) mod 10); od; x; end:
P:=proc(q) local a, b, n, v; v:=array(0..50);
for n from 0 to 50 do v[n]:=0; od; v[0]:=2; lprint(0, 2);
for n from 1 by 2 to q do if isprime(n) then b:=-1; a:=n;
while isprime(a) do b:=b+1; a:=V(a); od; if v[b]=0 then
v[b]:=n; lprint(b, n); fi; fi; od; end: P(10^10);
CROSSREFS
Cf. A244599.
Sequence in context: A176938 A006988 A282735 * A090251 A087281 A024234
KEYWORD
nonn,more,base
AUTHOR
Paolo P. Lava, Jul 15 2014
STATUS
approved