login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090251 a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29. 1
2, 29, 839, 24302, 703919, 20389349, 590587202, 17106639509, 495501958559, 14352450158702, 415725552643799, 12041688576511469, 348793243166188802, 10102962363242963789, 292637115290879761079, 8476373381072270107502 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to ((29+sqrt(837))/2) =28.9654761... Lim a(n)/a(n+1) as n approaches infinity = 0.0345238... =2/(29+sqrt(837)) =(29-sqrt(837))/2. Lim a(n+1)/a(n) as n approaches infinity = 28.9654761... = (29+sqrt(837))/2=2/(29-sqrt(837)). Lim a(n)/a(n+1) = 29 - Lim a(n+1)/a(n).

A Chebyshev T-sequence with a Diophantine property.

a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 93*(3*b)^2 =+4 with companion sequence b(n)=A097782(n+1), n>=0.

REFERENCES

O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

LINKS

Table of n, a(n) for n=0..15.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (29, -1).

FORMULA

a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29. a(n) = ((29+sqrt(837))/2)^n + ((29-sqrt(837))/2)^n, (a(n))^2 =a(2n)+2.

a(n) = S(n, 29) - S(n-2, 29) = 2*T(n, 29/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.

a(n) = ap^n + am^n, with ap := (29+3*sqrt(93))/2 and am := (29-3*sqrt(93))/2.

G.f.: (2-29*x)/(1-29*x+x^2).

EXAMPLE

a(4) =703919 = 29a(3) - a(2) = 29*24302 - 839= ((29+sqrt(837))/2)^4 + ((29-sqrt(837))/2)^4 = 703918.99999857 + 0.00000142 =703919.

(x,y) = (2;0), (29;1), (839;29), (24302,840), ..., give the

nonnegative integer solutions to x^2 - 93*(3*y)^2 =+4.

MATHEMATICA

a[0] = 2; a[1] = 29; a[n_] := 29a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)

LinearRecurrence[{29, -1}, {2, 29}, 30] (* Harvey P. Dale, May 28 2013 *)

PROG

(Sage) [lucas_number2(n, 29, 1) for n in xrange(0, 16)] # Zerinvary Lajos, Jun 27 2008

CROSSREFS

Cf. A083148, A007610.

a(n)=sqrt(4 + 93*(3*A097782(n-1))^2), n>=1.

Cf. A077428, A078355 (Pell +4 equations).

Cf. A090248 for 2*T(n, 27/2).

Sequence in context: A006988 A282735 A245252 * A087281 A024234 A077282

Adjacent sequences:  A090248 A090249 A090250 * A090252 A090253 A090254

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004

EXTENSIONS

More terms from Robert G. Wilson v, Jan 30 2004

Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 23:39 EDT 2017. Contains 290940 sequences.