The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078355 Minimal (positive) solution a(n) of Pell equation b(n)^2 - D(n)*a(n)^2 = +4 with D(n)= A077425(n). The companion sequence is a(n)=A077428(n). 18
 1, 3, 16, 1, 5, 8, 24, 640, 1, 7, 40, 195, 32, 3, 534000, 1, 9, 106000, 3, 12754704, 40, 8, 6525, 226592, 1, 11, 2968, 15, 1039424, 16, 48, 305, 352, 3621, 1856, 1, 13, 9384, 126585, 1360, 8, 896073208080, 56, 72664, 3, 6440, 5, 521904, 1, 15, 140510608, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For the conversion of the (x,y) values of Perron's table to the (b(n),a(n)) values see a A077428 comment. For the general solution of Pell b^2 - D(n)*a^2 = +4 see a comment in A077428 (with a and b interchanged). REFERENCES O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108). LINKS Table of n, a(n) for n=1..52. S. R. Finch, Class number theory Steven R. Finch, Class number theory [Cached copy, with permission of the author] MATHEMATICA d = Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&]; a[n_] := Module[{a, b, r}, b /. {r = Reduce[a > 0 && b > 0 && a^2 - d[[n]]*b^2 == 4, {a, b}, Integers]; (r /. C[1] -> 0) || (r /. C[1] -> 1) // ToRules} // Select[#, IntegerQ, 1] &] // First; Table[a[n], {n, 1, 52}] (* Jean-François Alcover, Jul 30 2013 *) CROSSREFS Sequence in context: A004002 A216149 A194604 * A107823 A139815 A165969 Adjacent sequences: A078352 A078353 A078354 * A078356 A078357 A078358 KEYWORD nonn AUTHOR Wolfdieter Lang, Nov 29 2002 EXTENSIONS More terms from Max Alekseyev, Mar 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 12:56 EDT 2024. Contains 371870 sequences. (Running on oeis4.)