login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139815 A triangle of coefficients of a Moebius-transformed Pascal triangle as a sum: b(x,y,n)=Sum[Binomial[n,i]*x^i*y^(n-i),{i,0,n}]; transforms: x'->(a1*x + b1)/(c1*x + d1); y'->(a2*y + b2)/(c2*y + d2); b1(x,y,n)=(c1*x + b1)^(k)*(c2*y + d2)^(k)*b(x',y',n); f(x,y,z,n)=b1(x,y,n)+b1(y,z,n)+b1(z,x,n). 0
3, -16, 4, 88, -48, 8, -496, 432, -144, 16, 2848, -3456, 1728, -384, 32, -16576, 25920, -17280, 5760, -960, 64, 97408, -186624, 155520, -69120, 17280, -2304, 128, -576256, 1306368, -1306368, 725760, -241920, 48384, -5376, 256, 3424768, -8957952, 10450944, -6967296, 2903040, -774144, 129024 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row sums are:

{3, -12, 48, -192, 768, -3072, 12288, -49152, 196608, -786432, 3145728}.

REFERENCES

P. J. Olver, Classical Invariant Theory, Cambridge Univ. Press, p. 242.

McKean and Moll, Elliptic Curves, Function Theory,Geometry, Arithmetic, Cambridge University Press, New York, 199, page 172

LINKS

Table of n, a(n) for n=1..43.

FORMULA

b(x,y,n)=Sum[Binomial[n,i]*x^i*y^(n-i),{i,0,n}]; transforms: x'->(a1*x + b1)/(c1*x + d1); y'->(a2*y + b2)/(c2*y + d2); b1(x,y,n)=(c1*x + b1)^(k)*(c2*y + d2)^(k)*b(x',y',n); f(x,y,z,n)=b1(x,y,n)+b1(y,z,n)+b1(z,x,n); Out_n,m=Coefficients(f(x,y,z,n)).

EXAMPLE

{3},

{-16,4},

{88, -48, 8},

{-496, 432, -144, 16},

{2848, -3456, 1728, -384, 32},

{-16576, 25920, -17280, 5760, -960,64},

{97408, -186624, 155520, -69120, 17280, -2304, 128},

{-576256, 1306368, -1306368, 725760, -241920, 48384, -5376, 256},

{3424768, -8957952,10450944, -6967296, 2903040, -774144, 129024, -12288, 512}, {-20417536, 60466176, -80621568, 62705664, -31352832, 10450944, -2322432, 331776, -27648, 1024},

{121980928, -403107840, 604661760, -537477120, 313528320, -125411328, 34836480, -6635520, 829440, -61440, 2048}

MATHEMATICA

a1 = 1; b1 = -2; c1 = 0; d1 = 1; a2 = 0; b2 = 1; c2 = 1; d2 = -2; p[x_, y_, k_] = (c1*x + b1)^(k)*(c2*y + d2)^(k)*Sum[Binomial[k, i]*((a1*x + b1)/(c1*x + d1))^i*((a2*y + b2)/(c2*y + d2))^(k - i), {i, 0, k}]; f[x_, y_, z_, k_] = p[x, y, k] + p[y, z, k] + p[z, x, k]; Table[ExpandAll[f[x, y, z, k]], {k, 0, 10}]; a = Table[CoefficientList[f[x, y, z, k] /. y -> 1 /. z -> 1, x], {k, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[f[x, y, z, k] /. y -> 1 /. z -> 1, x]], {k, 0, 10}]

CROSSREFS

Sequence in context: A194604 A078355 A107823 * A165969 A098373 A054793

Adjacent sequences:  A139812 A139813 A139814 * A139816 A139817 A139818

KEYWORD

uned,tabf,sign

AUTHOR

Roger L. Bagula, Jun 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 4 21:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)