login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139815
A triangle of coefficients of a Moebius-transformed Pascal triangle as a sum: b(x,y,n)=Sum[Binomial[n,i]*x^i*y^(n-i),{i,0,n}]; transforms: x'->(a1*x + b1)/(c1*x + d1); y'->(a2*y + b2)/(c2*y + d2); b1(x,y,n)=(c1*x + b1)^(k)*(c2*y + d2)^(k)*b(x',y',n); f(x,y,z,n)=b1(x,y,n)+b1(y,z,n)+b1(z,x,n).
0
3, -16, 4, 88, -48, 8, -496, 432, -144, 16, 2848, -3456, 1728, -384, 32, -16576, 25920, -17280, 5760, -960, 64, 97408, -186624, 155520, -69120, 17280, -2304, 128, -576256, 1306368, -1306368, 725760, -241920, 48384, -5376, 256, 3424768, -8957952, 10450944, -6967296, 2903040, -774144, 129024
OFFSET
1,1
COMMENTS
Row sums are:
{3, -12, 48, -192, 768, -3072, 12288, -49152, 196608, -786432, 3145728}.
REFERENCES
P. J. Olver, Classical Invariant Theory, Cambridge Univ. Press, p. 242.
McKean and Moll, Elliptic Curves, Function Theory,Geometry, Arithmetic, Cambridge University Press, New York, 199, page 172
FORMULA
b(x,y,n)=Sum[Binomial[n,i]*x^i*y^(n-i),{i,0,n}]; transforms: x'->(a1*x + b1)/(c1*x + d1); y'->(a2*y + b2)/(c2*y + d2); b1(x,y,n)=(c1*x + b1)^(k)*(c2*y + d2)^(k)*b(x',y',n); f(x,y,z,n)=b1(x,y,n)+b1(y,z,n)+b1(z,x,n); Out_n,m=Coefficients(f(x,y,z,n)).
EXAMPLE
{3},
{-16,4},
{88, -48, 8},
{-496, 432, -144, 16},
{2848, -3456, 1728, -384, 32},
{-16576, 25920, -17280, 5760, -960,64},
{97408, -186624, 155520, -69120, 17280, -2304, 128},
{-576256, 1306368, -1306368, 725760, -241920, 48384, -5376, 256},
{3424768, -8957952,10450944, -6967296, 2903040, -774144, 129024, -12288, 512}, {-20417536, 60466176, -80621568, 62705664, -31352832, 10450944, -2322432, 331776, -27648, 1024},
{121980928, -403107840, 604661760, -537477120, 313528320, -125411328, 34836480, -6635520, 829440, -61440, 2048}
MATHEMATICA
a1 = 1; b1 = -2; c1 = 0; d1 = 1; a2 = 0; b2 = 1; c2 = 1; d2 = -2; p[x_, y_, k_] = (c1*x + b1)^(k)*(c2*y + d2)^(k)*Sum[Binomial[k, i]*((a1*x + b1)/(c1*x + d1))^i*((a2*y + b2)/(c2*y + d2))^(k - i), {i, 0, k}]; f[x_, y_, z_, k_] = p[x, y, k] + p[y, z, k] + p[z, x, k]; Table[ExpandAll[f[x, y, z, k]], {k, 0, 10}]; a = Table[CoefficientList[f[x, y, z, k] /. y -> 1 /. z -> 1, x], {k, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[f[x, y, z, k] /. y -> 1 /. z -> 1, x]], {k, 0, 10}]
CROSSREFS
Sequence in context: A078355 A107823 A378639 * A165969 A098373 A054793
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Jun 14 2008
STATUS
approved