login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139818
Squares of Jacobsthal numbers.
11
0, 1, 1, 9, 25, 121, 441, 1849, 7225, 29241, 116281, 466489, 1863225, 7458361, 29822521, 119311929, 477204025, 1908903481, 7635439161, 30542106169, 122167725625, 488672300601, 1954686406201, 7818751217209, 31274993684025
OFFSET
0,4
COMMENTS
Run length transform gives A246035. - N. J. A. Sloane, Feb 26 2015
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
a(n) = (A001045(n))^2.
G.f.: x*(1-2*x)/((1-x)*(1+2*x)*(1-4*x)).
MATHEMATICA
LinearRecurrence[{3, 6, -8}, {0, 1, 1}, 25] (* Jean-François Alcover, Jan 09 2019 *)
PROG
(Magma) [1/9-(2/9)*(-2)^n+(1/9)*4^n: n in [0..35]]; // Vincenzo Librandi, Aug 09 2011
(PARI) concat (0, Vec(x*(1-2*x)/((1-x)*(1+2*x)*(1-4*x)) + O(x^30))) \\ Michel Marcus, Mar 04 2015
CROSSREFS
Cf. A001045, A246035. First differences give (apart from signs) A083086.
Sequence in context: A108570 A092769 A263951 * A373970 A227078 A146365
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 17 2008
EXTENSIONS
More terms from R. J. Mathar, Dec 12 2009
STATUS
approved