login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078357
Minimal positive solution x of Pell equation y^2 - A077426(n)*x^2 = -4.
8
1, 1, 2, 1, 2, 10, 1, 5, 2, 250, 1, 106, 1138, 2, 25, 146, 1, 298, 2, 5, 17, 1, 97, 10, 253970, 2, 1, 3034, 9148450, 2, 746, 10, 157, 126890, 1, 14341370, 5, 2, 110671282, 986, 7586, 1, 530, 130, 173, 2, 11068353370, 21685, 26, 694966754, 1, 17883410, 5528222698, 17, 87922, 2, 5, 41
OFFSET
1,3
COMMENTS
The corresponding values y are given in A078356.
For the general solution of Pell equation y^2 - A077426(n)*x^2 = -4 see a comment in A078356.
For the conversion of the values given in Perron's table to sequences A078356 and A078357, see comments in A078356.
REFERENCES
O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
LINKS
MATHEMATICA
$MaxExtraPrecision = 100; A077426 = Select[Range[ 600], ! IntegerQ[Sqrt[#]] && OddQ[ Length[ ContinuedFraction[(Sqrt[#] + 1)/2] // Last]] &]; a[n_] := {y, x} /. {ToRules[ Reduce[y > 0 && x > 0 && y^2 - A077426[[n]]*x^2 == -4, {y, x}, Integers] /. C[1] -> 0]} // Sort // First // Last; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jun 21 2013 *)
CROSSREFS
Sequence in context: A274198 A002079 A006126 * A225432 A086382 A249416
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Nov 29 2002
EXTENSIONS
Edited and extended by Max Alekseyev, Mar 03 2010
STATUS
approved