

A274198


Decimal expansion of limiting ratio described in Comments.


5



1, 2, 1, 2, 9, 7, 9, 9, 2, 7, 0, 4, 9, 3, 6, 7, 7, 1, 8, 9, 1, 5, 2, 6, 4, 0, 2, 5, 5, 5, 1, 1, 2, 8, 7, 8, 2, 2, 9, 0, 2, 7, 9, 5, 6, 9, 9, 8, 9, 8, 8, 9, 8, 2, 0, 7, 0, 0, 8, 7, 4, 0, 8, 0, 6, 8, 2, 8, 0, 2, 4, 2, 2, 2, 4, 4, 4, 3, 7, 3, 5, 3, 1, 3, 4, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

As in A274193, define g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n1,k1) + g(n1,4k) for n > 0, k > 1. The sum of numbers in the nth row of the array {g(n,k)} is given by A274197, and "limiting ratio" = limit of A274197(n)/A274197(n1).


LINKS



EXAMPLE

limiting ratio = 1.21297992704936771891526402555...


MATHEMATICA

z = 1500; g[n_, 0] = g[n, 0] = 1;
g[n_, k_] := g[n, k] = If[k > n, 0, g[n  1, k  1] + g[n  1, 4 k]];
t = Table[g[n, k], {n, 0, z}, {k, 0, n}];
u = N[w[[z]]/w[[z  1]], 100]


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



