The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274198 Decimal expansion of limiting ratio described in Comments. 5
 1, 2, 1, 2, 9, 7, 9, 9, 2, 7, 0, 4, 9, 3, 6, 7, 7, 1, 8, 9, 1, 5, 2, 6, 4, 0, 2, 5, 5, 5, 1, 1, 2, 8, 7, 8, 2, 2, 9, 0, 2, 7, 9, 5, 6, 9, 9, 8, 9, 8, 8, 9, 8, 2, 0, 7, 0, 0, 8, 7, 4, 0, 8, 0, 6, 8, 2, 8, 0, 2, 4, 2, 2, 2, 4, 4, 4, 3, 7, 3, 5, 3, 1, 3, 4, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS As in A274193, define g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n-1,k-1) + g(n-1,4k) for n > 0, k > 1. The sum of numbers in the n-th row of the array {g(n,k)} is given by A274197, and "limiting ratio" = limit of A274197(n)/A274197(n-1). LINKS Table of n, a(n) for n=1..86. EXAMPLE limiting ratio = 1.21297992704936771891526402555... MATHEMATICA z = 1500; g[n_, 0] = g[n, 0] = 1; g[n_, k_] := g[n, k] = If[k > n, 0, g[n - 1, k - 1] + g[n - 1, 4 k]]; t = Table[g[n, k], {n, 0, z}, {k, 0, n}]; w = Map[Total, t]; (* A274197 *) u = N[w[[z]]/w[[z - 1]], 100] RealDigits[u][[1]] (* A274198 *) CROSSREFS Cf. A274196, A274197, A274192, A274193, A274211 (reciprocal). Sequence in context: A022694 A173159 A271574 * A002079 A006126 A078357 Adjacent sequences: A274195 A274196 A274197 * A274199 A274200 A274201 KEYWORD nonn,cons,easy AUTHOR Clark Kimberling, Jun 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:29 EST 2023. Contains 367630 sequences. (Running on oeis4.)