OFFSET
0,3
COMMENTS
The triangular array (g(n,k)) at A274190 is defined as follows: g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n-1,k-1) + g(n-1,2k) for n > 0, k > 1.
From Gus Wiseman, Mar 12 2021: (Start)
Also (apparently) the number of compositions of n where all adjacent parts (x, y), satisfy x < 2y. For example, the a(1) = 1 through a(6) = 12 compositions are:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (32) (33)
(1111) (113) (114)
(122) (123)
(1112) (132)
(11111) (222)
(1113)
(1122)
(11112)
(111111)
(End)
LINKS
Daniel Gabric and Jeffrey Shallit, Smallest and Largest Block Palindrome Factorizations, arXiv:2302.13147 [math.CO], 2023.
EXAMPLE
Row (g(14,k)): 1, 51, 73, 69, 55, 40, 28, 19, 12, 8, 5, 3, 2, 1, 1; the reversal is 1 1 2 3 5 8 12 19 28 ..., which agrees with A274199 up to 19.
MATHEMATICA
g[n_, 0] = g[n, 0] = 1;
g[n_, k_] := g[n, k] = If[k > n, 0, g[n - 1, k - 1] + g[n - 1, 2 k]];
z = 300; u = Reverse[Table[g[z, k], {k, 0, z}]];
z = 301; v = Reverse[Table[g[z, k], {k, 0, z}]];
w = Join[{1}, Intersection[u, v]] (* A274199 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]<2*#[[i-1]], {i, 2, Length[#]}]&]], {n, 15}] (* Gus Wiseman, Mar 12 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 13 2016
STATUS
approved