login
A274199
Limiting reverse row of the array A274190.
22
1, 1, 2, 3, 5, 8, 12, 19, 29, 44, 67, 101, 152, 228, 342, 511, 763, 1138, 1695, 2523, 3752, 5578, 8287, 12307, 18272, 27119, 40241, 59700, 88556, 131340, 194772, 288815, 428229, 634900, 941263, 1395397, 2068560, 3066372, 4545387, 6737633, 9987026, 14803303
OFFSET
0,3
COMMENTS
The triangular array (g(n,k)) at A274190 is defined as follows: g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n-1,k-1) + g(n-1,2k) for n > 0, k > 1.
From Gus Wiseman, Mar 12 2021: (Start)
Also (apparently) the number of compositions of n where all adjacent parts (x, y), satisfy x < 2y. For example, the a(1) = 1 through a(6) = 12 compositions are:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (32) (33)
(1111) (113) (114)
(122) (123)
(1112) (132)
(11111) (222)
(1113)
(1122)
(11112)
(111111)
(End)
LINKS
Daniel Gabric and Jeffrey Shallit, Smallest and Largest Block Palindrome Factorizations, arXiv:2302.13147 [math.CO], 2023.
EXAMPLE
Row (g(14,k)): 1, 51, 73, 69, 55, 40, 28, 19, 12, 8, 5, 3, 2, 1, 1; the reversal is 1 1 2 3 5 8 12 19 28 ..., which agrees with A274199 up to 19.
MATHEMATICA
g[n_, 0] = g[n, 0] = 1;
g[n_, k_] := g[n, k] = If[k > n, 0, g[n - 1, k - 1] + g[n - 1, 2 k]];
z = 300; u = Reverse[Table[g[z, k], {k, 0, z}]];
z = 301; v = Reverse[Table[g[z, k], {k, 0, z}]];
w = Join[{1}, Intersection[u, v]] (* A274199 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]<2*#[[i-1]], {i, 2, Length[#]}]&]], {n, 15}] (* Gus Wiseman, Mar 12 2021 *)
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 13 2016
STATUS
approved