login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327421
In a Kolakoski n-chain, point at which term of penultimate sequence seq(n-1) differs from term of final sequence seq(n) in chain, when terms of seq(i) are run-lengths of seq(i+1) and the chain contains n sequences
0
0, 1, 2, 3, 5, 8, 12, 19, 29, 44, 66, 100, 151, 227, 341, 512, 769, 1154, 1729, 2591, 3886, 5827, 8743, 13117, 19675, 29515, 44281, 66432, 99668, 149532, 224307, 336451, 504649, 756962, 1135451, 1703198, 2554847, 3832293, 5748475, 8622647
OFFSET
1,3
COMMENTS
The terms of the Kolakoski sequence, A000002, are the run-lengths of the same sequence. The terms of the sequence never differ from themselves and a(1) is therefore assigned the value 0. In a Kolakoski n-chain consisting of n >= 2 sequences, the terms of seq(i) are the run-lengths of seq(i+1), with the final sequence, seq(n), in the chain being the run-lengths of seq(1). The sequence above, a(n), records the term at which seq(n-1) differs from seq(n) in a chain of n sequences that use the alphabets {2,1} for seq(1) and {1,2} for seq(2..n). For example, in the Kolakoski 2-chain, A025142 and A025143, the sequences are:
seq(1) = 2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,... (A025143)
seq(2) = 1,1,2,1,1,2,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,1,2,... (A025142)
The penultimate sequence, seq(n-1 = 1), differs from the final sequence, seq(n = 2), at the 1st term and therefore a(2) = 1. In this Kolakoski 3-chain, seq(n-1) differs from seq(n) at the 2nd term and a(3) = 2:
seq(1) = 2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,...
seq(2) = 1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,1,2,...
seq(3) = 1,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,...
Conjectures: 1) In a Kolakoski n-chain of the form given, as n -> infinity, seq(n) converges on the Kolakoski sequence, A000002, whose terms always match its own run-lengths, while seq(1) converges on the anti-Kolakoski sequence, A049705, whose terms never match its own run-lengths. 2) As i -> infinity, a(i) / a(i+1) converges on 2/3.
EXAMPLE
In this Kolakoski 4-chain, seq(n-1) differs from seq(n) at the 3rd term and a(4) = 3:
seq(1) = 2,1,1,2,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,...
seq(2) = 1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,...
seq(3) = 1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,2,1,2,1,1,2,...
seq(4) = 1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,...
In this Kolakoski 5-chain, seq(n-1) differs from seq(n) at the 5th term and a(5) = 5:
seq(1) = 2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,1,2,2,1,...
seq(2) = 1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,...
seq(3) = 1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,...
seq(4) = 1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,...
seq(5) = 1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,2,...
In this Kolakoski 8-chain, seq(n-1) differs from seq(n) at the 19th term and a(8) = 19:
seq(1) = 2,1,1,2,2,1,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,...
seq(2) = 1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,2,...
[...]
seq(7) = 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,...
seq(8) = 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,...
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Anthony Sand, Nov 29 2019
STATUS
approved