login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000929
Dimension of n-th degree part of Steenrod algebra.
54
1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 20, 22, 23, 26, 28, 29, 32, 35, 37, 41, 45, 47, 51, 55, 58, 63, 68, 72, 77, 82, 86, 92, 98, 103, 111, 118, 123, 131, 139, 145, 154, 164, 171, 180, 190, 198, 208, 219, 229, 241, 253, 264, 278, 291
OFFSET
0,4
COMMENTS
Number of partitions p(1)+p(2)+...+p(m) = n (into positive parts) such that 2*p(k) <= p(k-1).
Number of partitions of n into parts of the form 2^j-1, j=1,2,... (called s-partitions). Example: a(7)=4 because we have [7], [3,3,1], [3,1,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 06 2006
One direction of a bijection between both sorts of partitions, as an algorithm: take a partition P (p(1)+p(2)+...+p(m) such that 2*p(k) <= p(k-1), m is the number of parts), subtract 1 from p(m), 2 from p(m-1), 4 from p(m-2), etc. (this gives a valid partition of the same type), add the part 2^m-1 to the other (initially empty) partition P', repeat until P is empty. The other direction goes by splitting parts 2^k-1 (uniquely) into distinct powers of 2 that are (in decreasing order) added at the left. - Joerg Arndt, Jan 06 2013
REFERENCES
Steenrod, N. and Epstein, D., Cohomology Operations, Princeton Univ. Press, 1962.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 513 terms from Reinhard Zumkeller)
P. C. P. Bhatt, An interesting way to partition a number, Inform. Process. Lett., 71, 1999, 141-148.
W. M. Y. Goh, P. Hitczenko and A. Shokoufandeh, s-partitions, Inform. Process. Lett., 82, 2002, 327-329.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
FORMULA
G.f.: 1/Product_{i>=1} (1 - x^(2^i-1)). - Simon Plouffe (corrected by Joerg Arndt, Dec 28 2012)
a(n) = p(n,1) with p(n,k) = if k <= n then p(n-k,k) + p(n,2*k+1), otherwise 0^n. - Reinhard Zumkeller, Mar 18 2009
G.f.: Sum_{i>=0} x^(2^i-1) / Product_{j=1..i} (1 - x^(2^j-1)). - Ilya Gutkovskiy, Jun 05 2017
EXAMPLE
From Joerg Arndt, Dec 28 2012: (Start)
There are a(17)=13 partitions of 17 into Mersenne numbers:
[ 1] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
[ 3] [ 3 3 1 1 1 1 1 1 1 1 1 1 1 ]
[ 4] [ 3 3 3 1 1 1 1 1 1 1 1 ]
[ 5] [ 3 3 3 3 1 1 1 1 1 ]
[ 6] [ 3 3 3 3 3 1 1 ]
[ 7] [ 7 1 1 1 1 1 1 1 1 1 1 ]
[ 8] [ 7 3 1 1 1 1 1 1 1 ]
[ 9] [ 7 3 3 1 1 1 1 ]
[10] [ 7 3 3 3 1 ]
[11] [ 7 7 1 1 1 ]
[12] [ 7 7 3 ]
[13] [ 15 1 1 ]
There are a(17)=13 partitions p(1)+p(2)+...+p(m) = 17 such that 2*p(k) <= p(k-1):
[ 1] [ 10 4 2 1 ]
[ 2] [ 10 5 2 ]
[ 3] [ 11 4 2 ]
[ 4] [ 11 5 1 ]
[ 5] [ 12 4 1 ]
[ 6] [ 12 5 ]
[ 7] [ 13 3 1 ]
[ 8] [ 13 4 ]
[ 9] [ 14 2 1 ]
[10] [ 14 3 ]
[11] [ 15 2 ]
[12] [ 16 1 ]
[13] [ 17 ]
(End)
MAPLE
The sequence is C(n, n) where C := proc(m, n) option remember; local k, a; if m = 0 then if n = 0 then 1 else 0 fi; elif m > n then C(n, n); else a := 0; for k from 0 to m do a := a + C(floor(k/2), n-k) od; a; fi end;
g:=1/product(1-x^(2^k-1), k=1..10): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..64); # Emeric Deutsch, Mar 06 2006
# alternative Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, min(n-j, iquo(j, 2))), j=1..i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..80); # Alois P. Heinz, Mar 14 2021
MATHEMATICA
nn = 63; CoefficientList[
Series[Product[1/(1 - x^(2^i - 1)), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2013 *)
PROG
(PARI)
N=166; q='q+O('q^N);
gf=1/prod(n=1, 1+ceil(log(N)/log(2)), 1-q^(2^n - 1) );
Vec(gf)
/* Joerg Arndt, Oct 06 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved