The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000927 "First factor" (or relative class number) h- for cyclotomic field Q( exp(2 Pi / prime(n)) ). (Formerly M2711 N1088) 8
 1, 1, 1, 1, 1, 1, 1, 1, 3, 8, 9, 37, 121, 211, 695, 4889, 41241, 76301, 853513, 3882809, 11957417, 100146415, 838216959, 13379363737, 411322824001, 3547404378125, 9069094643165, 63434933542623, 161784800122409, 1612072001362952, 2604529186263992195, 28496379729272136525, 646901570175200968153, 1753848916484925681747, 687887859687174720123201, 2333546653547742584439257, 56234327700401832767069245, 2708534744692077051875131636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS Washington gives a very extensive table. But beware errors:  Washington incorrectly gives a(17) = 41421, a(25) = 411322842001 (corrected in the second edition). REFERENCES Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 429. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360 (1st edition) pp. 412-420 (2nd edition). LINKS Max Alekseyev, Table of n, a(n) for n = 1..100 Hisanori Mishima, Factorizations of Cyclotomic Numbers M. Newman, A table of the first factor for prime cyclotomic fields, Math. Comp., 24 (1970), 215-219. M. A. Shokrollahi, Tables FORMULA For n>2, a(n) equals absolute value of determinant of the matrix with entries floor(i*j/p)-floor((i-1)*j/p), 3 <= i,j <= (p-1)/2, where p = prime(n) = A000040(n). - Max Alekseyev, Oct 31 2012 a(n) = A061653(A000040(n)). EXAMPLE For n = 9, prime(9) = 23, a(9) = 3. For n = 38, prime(38) = 163, a(38) = 2708534744692077051875131636. MAPLE f:= proc(n) uses LinearAlgebra;   local p, M;   p:= ithprime(n);   M:= Matrix((p-3)/2, (p-3)/2, (i, j) -> floor((i+1)*(j+2)/p) - floor(i*(j+2)/p));   abs(Determinant(M)); end proc: 1, seq(f(n), n=3..50); # Robert Israel, Sep 20 2016 MATHEMATICA a[n_]:= With[{p = Prime[n]}, If[n<4, 1, Abs[ Det[ Table[ Quotient[ (i+2)*(j+2), p] - Quotient[ (i+1)*(j+2), p], {i, 1, (p-1)/2-2}, {j, 1, (p-1)/2-2}]]]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Aug 01 2013, translated from Pari; modified by G. C. Greubel, Aug 08 2019 *) PROG (PARI) { A000927(n) = if(n<3, return(1)); my(p=prime(n)); abs( matdet(matrix((p-1)/2-2, (p-1)/2-2, i, j, ((i+2)*(j+2))\p - ((i+1)*(j+2))\p)) ); } \\ Max Alekseyev, Oct 31 2012; corrected by G. C. Greubel and Michel Marcus, Aug 07 2019 CROSSREFS Subsequence of A061653. For the full class number h = h- * h+, see A055513, which agrees for the first 36 terms, assuming the Generalized Riemann Hypothesis. Sequence in context: A223331 A101720 A093439 * A055513 A038226 A095866 Adjacent sequences:  A000924 A000925 A000926 * A000928 A000929 A000930 KEYWORD nonn,nice AUTHOR EXTENSIONS Edited by Max Alekseyev, Oct 25 2012 a(1)=1 prepended by Max Alekseyev, Mar 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)