login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000925
Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.
19
1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 4
OFFSET
0,2
REFERENCES
A. Das and A. C. Melissinos, Quantum Mechanics: A Modern Introduction, Gordon and Breach, 1986, p. 47.
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.
FORMULA
Coefficient of q^k in (1/4)*(1 + theta_3(0, q))^2.
a(A001481(n))>0; a(A022544(n))=0. - Benoit Cloitre, Apr 20 2003
MATHEMATICA
a[n_] := (pr = PowersRepresentations[n, 2, 2]; Count[Union[Join[pr, Reverse /@ pr]], {j_ /; j >= 0, k_ /; k >= 0}]); a /@ Range[0, 100] (* Jean-François Alcover, Apr 05 2011 *)
nn = 100; t = CoefficientList[Series[Sum[x^k^2, {k, 0, Sqrt[nn]}]^2, {x, 0, nn}], x] (* T. D. Noe, Apr 05 2011 *)
SquareQ[n_] := IntegerQ[Sqrt[n]]; Table[Count[FrobeniusSolve[{1, 1}, n], {__?SquareQ}], {n, 0, 100}] (* Robert G. Wilson v, Apr 15 2017 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, if(i^2+j^2-n, 0, 1)))
(Haskell)
a000925 n = sum $ map (a010052 . (n -)) $ takeWhile (<= n) a000290_list
-- Reinhard Zumkeller, Sep 14 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
STATUS
approved