The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258292 Expansion of psi(-q)^2 * chi(q^3)^2 in powers of q where psi(), f() are Ramanujan theta functions. 6
 1, -2, 1, 0, -2, 2, 0, 0, 1, 4, -4, 0, 0, -4, 0, 0, -2, 2, 4, 0, 2, 0, 0, 0, 0, -6, 2, 0, 0, 2, 0, 0, 1, 0, -4, 0, 4, -4, 0, 0, -4, 2, 0, 0, 0, 8, 0, 0, 0, -2, 3, 0, -4, 2, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, -2, 4, 0, 0, 2, 0, 0, 0, 4, -4, 2, 0, 0, 0, 0, 0, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(q) * psi(-q)^2 / psi(-q^3) in powers of q where psi(), f() are Ramanujan theta functions. Expansion of f(x*w, x/w)^2 in powers of x where w is a primitive cube root of unity and f() is Ramanujan's general theta function. Expansion of (eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)))^2 in powers of q. Euler transform of period 12 sequence [ -2, 0, 0, -2, -2, -2, -2, -2, 0, 0, -2, -2, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 18 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A122856. G.f.: (Product_{k>0} (1 + x^k) * (1 + x^(3*k)) / (1 - x^(2*k) + x^(4*k)))^2. a(n) = (-1)^n * A258279(n). Convolution square of A089807. a(2*n) = A258228(n). a(3*n + 1) = -2 * A122865(n). a(3*n + 2) = A122856(n). a(4*n) = a(n). a(4*n + 3) = 0. a(12*n + 1) = -2 * A002175(n). a(18*n) = A004018(n). a(18*n + 3) = a(18*n + 6) = a(18*n + 12) = 0. EXAMPLE G.f. = 1 - 2*q + q^2 - 2*q^4 + 2*q^5 + q^8 + 4*q^9 - 4*q^10 - 4*q^13 + ...kkj MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/3, q]^2, {q, 0, n}]; a[ n_] := SeriesCoefficient[ q^(1/8) QPochhammer[ -q^3] EllipticTheta[ 2, Pi/4, q^(1/2)]^2 / (Sqrt[2] EllipticTheta[ 2, Pi/4, q^(3/2)]), {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)))^2, n))}; (Magma) A := Basis( ModularForms( Gamma1(36), 1), 82); A[1] - 2*A[2] + A[3] - 2*A[5] + 2*A[6] + A[9] + 4*A[10] - 4*A[11] - 4*A[14] - 2*A[17] + 2*A[18 ] + 4*A[19]; CROSSREFS Cf. A002175, A004018, A089807, A122856, A122865, A258228, A258279. Sequence in context: A134663 A000925 A258279 * A003985 A328948 A287524 Adjacent sequences: A258289 A258290 A258291 * A258293 A258294 A258295 KEYWORD sign AUTHOR Michael Somos, May 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 07:01 EST 2022. Contains 358544 sequences. (Running on oeis4.)