|
|
A004018
|
|
Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).
(Formerly M3218)
|
|
122
|
|
|
1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of points in square lattice on the circle of radius sqrt(n). Equivalently, number of Gaussian integers of norm n (cf. Conway-Sloane, p. 106).
Theta series of D_2 lattice.
Number 6 of the 74 eta-quotients listed in Table I of Martin (1996).
The zeros in this sequence correspond to those integers with an equal number of 4k+1 and 4k+3 divisors, or equivalently to those that have at least one 4k+3 prime factor with an odd exponent (A022544). - Ant King, Mar 12 2013
If A(q) = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + ... denotes the o.g.f. of this sequence then the function F(q) := 1/4*(A(q^2) - A(q^4)) = ( Sum_{n >= 0} q^(2*n+1)^2 )^2 is the o.g.f. for counting the ways a positive integer n can be written as the sum of two positive odd squares. - Peter Bala, Dec 13 2013
Expansion coefficients of (2/Pi)*K, with the real quarter period K of elliptic functions, as series of the Jacobi nome q, due to (2/Pi)*K = theta_3(0,q)^2. See, e.g., Whittaker-Watson, p. 486. - Wolfdieter Lang, Jul 15 2016
|
|
REFERENCES
|
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).
W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.
C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.
|
|
LINKS
|
M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.3. Example 3.
|
|
FORMULA
|
Expansion of theta_3(q)^2 = (Sum_{n=-oo..+oo} q^(n^2))^2 = Product_{m>=1} (1-q^(2*m))^2 * (1+q^(2*m-1))^4.
Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 (mod 4) and the q's are primes == 3 (mod 4). Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...
G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004
Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004
Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004
Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).
The constant sqrt(Pi)/Gamma(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011
Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q). - Joerg Arndt, Aug 15 2011
Dirichlet g.f. Sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012
a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*Sum_{i=1..floor(n/2)} floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2). - Wesley Ivan Hurt, Jan 09 2013
A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.
Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0): theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)
G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018
|
|
EXAMPLE
|
G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - John Cannon, Dec 30 2006
|
|
MAPLE
|
(sum(x^(m^2), m=-10..10))^2;
# Alternative:
A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1);
seq(coeff(%, x, j), j=0..len-1) end:
t1 := A004018list(102);
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *)
a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *)
a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* or *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
|
|
PROG
|
(PARI) {a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* Michael Somos, Mar 14 2003 */
(PARI) {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
(PARI) a(n)=if(n==0, return(1)); my(f=factor(n)); 4*prod(i=1, #f~, if(f[i, 1]%4==1, f[i, 2]+1, if(f[i, 2]%2 && f[i, 1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015
(Magma) Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */
(Sage)
Q = DiagonalQuadraticForm(ZZ, [1]*2)
(Julia) # JacobiTheta3 is defined in A000122.
A004018List(len) = JacobiTheta3(len, 2)
(Python)
from sympy import factorint
def a(n):
if n == 0: return 1
an = 4
for pi, ei in factorint(n).items():
if pi%4 == 1: an *= ei+1
elif pi%4 == 3 and ei%2: return 0
return an
(Python)
from math import prod
from sympy import factorint
def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 # Chai Wah Wu, Jul 07 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice,core
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|