login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004018 Theta series of square lattice (or number of ways of writing n as a sum of 2 squares).
(Formerly M3218)
92
1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of points in square lattice on the circle of radius sqrt(n). Equivalently, number of Gaussian integers of norm n (cf. Conway-Sloane, p. 106).

Often denoted by r(n) or r_2(n).

Let b(n)=A004403(n), then sum(k=1..n, a(k)*b(n-k) ) = 1. - John W. Layman

Theta series of D_2 lattice.

Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = prod(n>=1, 1-q^(k*n) ) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q).  - Joerg Arndt, Aug 15 2011

Number 6 of the 74 eta-quotients listed in Table I of Martin 1996.

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

The zeros in this sequence correspond to those integers with an equal number of 4k+1 and 4k+3 divisors, or equivalently to those that have at least one 4k+3 prime factor with an odd exponent (A022544). - Ant King, Mar 12 2013

If A(q) = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + ... denotes the o.g.f. of this sequence then the function F(q) := 1/4*(A(q^2) - A(q^4)) = ( Sum_{n >= 0} q^(2*n+1)^2 )^2 is the o.g.f. for counting the ways a positive integer n can be written as the sum of two positive odd squares. - Peter Bala, Dec 13 2013

Expansion coefficients of (2/Pi)*K, with the real quarter period K of elliptic functions, as series of the Jacobi nome q, due to (2/Pi)*K = theta_3(0,q)^2. See. e.g., Whittaker-Watson, p. 486. - Wolfdieter Lang, Jul 15 2016

Sum_{k=0..n} a(n) = A057655(n). Robert G. Wilson v, Dec 22 2016

The lim n-> inf. a(n)/n - Pi*log(n) = A062089: Sierpinski's constant. Robert G. Wilson v, Dec 22 2016

The mean value of a(n) is Pi, see A057655 for more details. - M. F. Hasler, Mar 20 2017

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).

E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).

W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.

C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the Universty Press.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

G. E. Andrews, R. Lewis and Z.-G. Liu, An identity relating a theta series to a sum of Lambert series, Bull. London Math. Soc., 33 (2001), 25-31.

H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.

S. Cooper and M. Hirschhorn, A combinatorial proof of a result from number theory, Integers 4 (2004), #A09.

Michael Gilleland, Some Self-Similar Integer Sequences

M. D. Hirschhorn, Jacobi's Two-Square Theorem and Related Identities

M. D. Hirschhorn, Arithmetic Consequences of Jacobi's Two-Squares Theorem

M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Jacobi-Legendre letters, Correspondance mathématique   entre Legendre et Jacobi, J. Reine Angew. Math. 80 (1875) 205-279, letter of September 9, 1828, p. 240-243, formula for 2K/Pi on p. 242.

Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]

Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.

Christian Kassel, Christophe Reutenauer, The Fourier expansion of eta(z)eta(2z)eta(3z)/eta(6z), arXiv:1603.06357 [math.NT], 2016.

M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.3. Example 3.

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

G. Nebe and N. J. A. Sloane, Home page for this lattice

F. Richman, Counting Gaussian integers in a disk

Grant Sanderson, Pi hiding in prime regularities (2017)

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

M. Somos, Introduction to Ramanujan theta functions

G. Villemin, Sommes de 2 carrés

Eric Weisstein's World of Mathematics, Barnes-Wall Lattice

Eric Weisstein's World of Mathematics, Moebius Transform

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Sum of Squares Function

Eric Weisstein's World of Mathematics, Theta Series

G. Xiao, Two squares

Index entries for sequences related to sums of squares

Index entries for "core" sequences

FORMULA

Expansion of theta_3(q)^2 = sum(n=-inf..+inf, q^(n^2) )^2 = prod(m>=1, (1-q^(2*m))^2 * (1+q^(2*m-1))^4 ).

Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 mod 4 and the q's are primes == 3 mod 4. Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...

G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]

a(n) = 4*A002654(n), n>0.

Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004

Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004

Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004

Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007

G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).

The constant sqrt(Pi)/GAMMA(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011

a(n) = A004531(4*n). a(n) = 2*A105673(n), if n>0.

Dirichlet g.f. sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012

a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*sum((floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2)), i=1..floor(n/2)). - Wesley Ivan Hurt, Jan 09 2013

From Wolfdieter Lang, Aug 01 2016 (Start):

A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.

Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0):  theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)

a(n) = (4/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018

EXAMPLE

G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - John Cannon, Dec 30 2006

MAPLE

(sum(x^(m^2), m=-10..10))^2;

# Alternative:

A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1);

seq(coeff(%, x, j), j=0..len-1) end: A004018list(102); # Peter Luschny, Oct 02 2018

MATHEMATICA

SquaresR[2, Range[0, 110]] (* Harvey P. Dale, Oct 10 2011 *)

a[ n_] := SquaresR[ 2, n]; (* Michael Somos, Nov 15 2011 *)

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *)

a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *)

a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* Michael Somos, May 17 2015 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)

PROG

(PARI) {a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* _Michael Somos, Mar 14 2003 */

(PARI) {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */

(PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */

(PARI) a(n)=if(n==0, return(1)); my(f=factor(n)); 4*prod(i=1, #f~, if(f[i, 1]%4==1, f[i, 2]+1, if(f[i, 2]%2 && f[i, 1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015

(MAGMA) Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */

(Sage)

Q = DiagonalQuadraticForm(ZZ, [1]*2)

Q.representation_number_list(102) # Peter Luschny, Jun 20 2014

(Julia) # JacobiTheta3 is defined in A000122.

A004018List(len) = JacobiTheta3(len, 2)

A004018List(102) |> println # Peter Luschny, Mar 12 2018

CROSSREFS

Row d=2 of A122141 and of A319574, 2th column of A286815.

Partial sums - 1 give A014198.

A071385 gives records; A071383 gives where records occur.

Cf. A001481, A004020, A005883, A057655 (partial sums), A057961, A057962, A002654,

A104271, A105673.

Sequence in context: A279365 A164613 A104794 * A253185 A028658 A241535

Adjacent sequences:  A004015 A004016 A004017 * A004019 A004020 A004021

KEYWORD

nonn,easy,nice,core

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 14:53 EDT 2018. Contains 316528 sequences. (Running on oeis4.)