login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004531
Number of integer solutions to x^2 + 4 * y^2 = n.
7
1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 8, 4, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 8, 0, 0, 8, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 12, 4, 0, 0, 8
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2) * eta(q^8))^5 / (eta(q)^2 * eta(q^4)^4 * eta(q^16)^2) in powers of q.
Expansion of phi(x) * phi(x^4) = phi(x^4)^2 + 2 * x * psi(x^4)^2 in powers of x where phi(x), psi(x) are Ramanujan theta functions.
Expansion of (theta2^2(q^2) + theta3^2(q^2) + theta4^2(q^2)) / 2 in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, 1, 2, -3, 2, -4, 2, -3, 2, 1, 2, -3, 2, -2, ...]. - Michael Somos, Jun 20 2014
G.f.: Sum_{i,j} x^(i^2 + 4 * j^2).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A004018(n). a(4*n + 1) = A004020(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022
EXAMPLE
G.f. = 1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
MATHEMATICA
CoefficientList[EllipticTheta[3, 0, x]*EllipticTheta[3, 0, x^4] + O[x]^105, x] (* Jean-François Alcover, Nov 05 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n])}; /* Michael Somos, Jul 04 2005 */
(PARI) {a(n) = local(A, e1, e2, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2 + A); e2 = eta(x^4 + A); e4 = eta(x^8 + A); polcoeff( (e2^12 + e1^8 * e4^4 + 4 * x * e1^4 * e4^8) / (2 * e1^4 * e2^2 * e4^4), n))};
(Sage)
Q = DiagonalQuadraticForm(ZZ, [4, 1])
Q.representation_number_list(105) # Peter Luschny, Jun 20 2014
CROSSREFS
KEYWORD
nonn
STATUS
approved