OFFSET
0,2
COMMENTS
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Michael Somos, Introduction to Ramanujan theta functions.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2) * eta(q^8))^5 / (eta(q)^2 * eta(q^4)^4 * eta(q^16)^2) in powers of q.
Expansion of phi(x) * phi(x^4) = phi(x^4)^2 + 2 * x * psi(x^4)^2 in powers of x where phi(x), psi(x) are Ramanujan theta functions.
Expansion of (theta2^2(q^2) + theta3^2(q^2) + theta4^2(q^2)) / 2 in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, 1, 2, -3, 2, -4, 2, -3, 2, 1, 2, -3, 2, -2, ...]. - Michael Somos, Jun 20 2014
G.f.: Sum_{i,j} x^(i^2 + 4 * j^2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022
EXAMPLE
G.f. = 1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
MATHEMATICA
CoefficientList[EllipticTheta[3, 0, x]*EllipticTheta[3, 0, x^4] + O[x]^105, x] (* Jean-François Alcover, Nov 05 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n])}; /* Michael Somos, Jul 04 2005 */
(PARI) {a(n) = local(A, e1, e2, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2 + A); e2 = eta(x^4 + A); e4 = eta(x^8 + A); polcoeff( (e2^12 + e1^8 * e4^4 + 4 * x * e1^4 * e4^8) / (2 * e1^4 * e2^2 * e4^4), n))};
(Sage)
Q = DiagonalQuadraticForm(ZZ, [4, 1])
Q.representation_number_list(105) # Peter Luschny, Jun 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved