OFFSET
0,2
COMMENTS
REFERENCES
J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
Clay Mathematics Institute, The Birch and Swinnerton-Dyer Conjecture
Department of Pure Maths., Univ. Sheffield, Pythagorean triples and the congruent number problem
Karl Rubin, Elliptic curves and right triangles
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x) * phi(x^4) * phi(x^32) in powers of x where phi() is a Ramanujan theta function.
a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 08 2012
EXAMPLE
a(4) = 4 because (1,0,0), (-1,0,0), (0,2,0) and (0,-2,0) are solutions.
1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
MATHEMATICA
J12[q_] := Sum[q^n^2, {n, -10, 10}]; CoefficientList[Series[J12[q]J12[q^4]J12[q^32], {q, 0, 100}], q]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^5 * eta(x^16 + A)^-2 * eta(x^32 + A)^-2 * eta(x^64 + A)^5 * eta(x^128 + A)^-2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 13 2002
EXTENSIONS
More terms from Vladeta Jovovic, Jun 16 2002
STATUS
approved