login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182056 Expansion of psi(x) * chi(-x^3) * f(-x^16) * chi(-x^24) / phi(-x^12)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. 3
1, 1, 0, 0, -1, 0, 0, 0, 0, -2, 0, 0, 4, 4, 0, 0, -6, -1, 0, 0, 1, -8, 0, 0, 11, 14, 0, 0, -19, -4, 0, 0, 4, -23, 0, 0, 31, 40, 0, 0, -50, -10, 0, 0, 11, -60, 0, 0, 77, 98, 0, 0, -122, -24, 0, 0, 28, -140, 0, 0, 173, 224, 0, 0, -273, -54, 0, 0, 62, -304, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/3) * eta(q^2)^2 * eta(q^3) * eta(q^16) * eta(q^24)^3 / (eta(q) * eta(q^6) * eta(q^12)^4 * eta(q^48)) in powers of q.

Euler transform of period 48 sequence [ 1, -1, 0, -1, 1, -1, 1, -1, 0, -1, 1, 3, 1, -1, 0, -2, 1, -1, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, -1, 1, -2, 0, -1, 1, 3, 1, -1, 0, -1, 1, -1, 1, -1, 0, -1, 1, 0, ...].

a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A182032(12*n - 1). a(4*n + 1) = A182032(12*n + 2).

EXAMPLE

1 + x - x^4 - 2*x^9 + 4*x^12 + 4*x^13 - 6*x^16 - x^17 + x^20 + ...

1/q + q^2 - q^11 - 2*q^26 + 4*q^35 + 4*q^38 - 6*q^47 - q^50 + q^59 + ...

MATHEMATICA

QP := QPochhammer; A182056[n_] := SeriesCoefficient[QP[q^2]^2*QP[q^3]* QP[q^16]*QP[q^24]^3/(QP[q]* QP[q^6]*QP[q^12]^4*QP[q^48]), {q, 0, n}];

Table[A182056[n], {n, 0, 50}] (* G. C. Greubel, Dec 24 2017 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^16 + A) * eta(x^24 + A)^3 / (eta(x + A) * eta(x^6 + A) * eta(x^12 + A)^4 * eta(x^48 + A)), n))}

CROSSREFS

Cf. A182032.

Sequence in context: A072071 A329264 A045836 * A072070 A137830 A137828

Adjacent sequences:  A182053 A182054 A182055 * A182057 A182058 A182059

KEYWORD

sign

AUTHOR

Michael Somos, Apr 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)