login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072070
Number of integer solutions to the equation 4*x^2 + y^2 + 8*z^2 = n.
9
1, 2, 0, 0, 4, 4, 0, 0, 6, 6, 0, 0, 8, 12, 0, 0, 12, 8, 0, 0, 8, 8, 0, 0, 8, 14, 0, 0, 16, 4, 0, 0, 6, 16, 0, 0, 12, 20, 0, 0, 24, 8, 0, 0, 8, 20, 0, 0, 24, 18, 0, 0, 24, 12, 0, 0, 0, 16, 0, 0, 16, 20, 0, 0, 12, 8, 0, 0, 16, 16, 0, 0, 30, 32, 0, 0, 24, 16, 0, 0, 24, 18, 0, 0, 16, 24, 0, 0, 24, 16
OFFSET
0,2
COMMENTS
Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and a(n) = 2 A072071(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
LINKS
Clay Mathematics Institute, The Birch and Swinnerton-Dyer Conjecture
Department of Pure Maths., Univ. Sheffield, Pythagorean triples and the congruent number problem
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q) * phi(q^4) * phi(q^8) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 09 2012
Euler transform of period 32 sequence [2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -5, 2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -3, ...]. - Michael Somos, Feb 11 2003
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A014455(n). - Michael Somos, Jun 08 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(7/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A080917. - Michael Somos, Jul 23 2018
EXAMPLE
a(4) = 4 because (1, 0, 0), (-1, 0, 0), (0, 2, 0) and (0, -2, 0) are solutions.
G.f. = 1 + 2*q + 4*q^4 + 4*q^5 + 6*q^8 + 6*q^9 + 8*q^12 + 12*q^13 + 12*q^16 + 8*q^17 + ...
MATHEMATICA
maxN=128; soln3=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/8]]; yMax=Ceiling[Sqrt[maxN/2]]; zMax=Ceiling[Sqrt[maxN/16]]; Do[n=4x^2+y^2+8z^2; If[n>0&&n<=maxN/2, s=8; If[x==0, s=s/2]; If[y==0, s=s/2]; If[z==0, s=s/2]; soln3[[n]]+=s], {x, 0, xMax}, {y, 0, yMax}, {z, 0, zMax}]
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^4] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* Michael Somos, Jul 23 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^3 * eta(x^16 + A)^3 * eta(x^32 + A)^-2, n))}; /* Michael Somos, Feb 11 2003 */
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 13 2002
STATUS
approved