

A072073


Number of solutions to Cototient(x) = A051953(x) = 2^n.


0



1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) increases at A000043(n).
Since A051953(p) = 1 for p prime, and given that there are an infinite number of primes, we disregard a(0) = oo.  Michael De Vlieger, Mar 25 2020


LINKS

Table of n, a(n) for n=1..61.


EXAMPLE

InvCototient(2^0) has an infinite number of entries, so 2^0=1 is left out.
n=14: 2^14=16384, InvCototient(16384) = {24576,28672,31744,32512,32764,32768}, so a(14)=6;


MATHEMATICA

Length /@ Most@ Split@ DeleteCases[Select[Array[#  EulerPhi[#] &, 10^6], IntegerQ@ Log2@ # &], 1] (* Michael De Vlieger, Mar 25 2020 *)


CROSSREFS

Cf. A051953, A058764, A000043, A063740.
Sequence in context: A321211 A336515 A130500 * A320757 A061716 A341053
Adjacent sequences: A072070 A072071 A072072 * A072074 A072075 A072076


KEYWORD

nonn


AUTHOR

Labos Elemer, Jun 13 2002


STATUS

approved



