login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072069 Number of integer solutions to the equation 2x^2+y^2+32z^2=m for an odd number m=2n-1. 9
2, 4, 0, 0, 6, 4, 0, 0, 4, 4, 0, 0, 2, 8, 0, 0, 12, 8, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 12, 20, 0, 0, 16, 4, 0, 0, 12, 12, 0, 0, 14, 20, 0, 0, 20, 8, 0, 0, 4, 20, 0, 0, 8, 12, 0, 0, 24, 8, 0, 0, 14, 8, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Related to primitive congruent numbers A006991.

Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and 2 a(n) = A072068(n).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

Clay Mathematics Institute, The Birch and Swinnerton-Dyer Conjecture

Department of Pure Maths., Univ. Sheffield, Pythagorean triples and the congruent number problem

Karl Rubin, Elliptic curves and right triangles

FORMULA

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012

Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^2 * eta(q^32)^5 / (eta(q)^2 * eta(q^4)^3 * eta(q^16)^2 * eta(q^64)^2) in powers of q. - Michael Somos, Dec 26 2019

EXAMPLE

a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.

G.f. = 2*x + 4*x^2 + 6*x^5 + 4*x^6 + 4*x^9 + 4*x^10 + 2*x^13 + 8*x^14 + ... - Michael Somos, Dec 26 2019

G.f. = 2*q + 4*q^3 + 6*q^9 + 4*q^11 + 4*q^17 + 4*q^19 + 2*q^25 + 8*q^27 + 12*q^33

+ ...

MATHEMATICA

maxN=128; soln2=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/32]]; Do[n=2x^2+y^2+32z^2; If[OddQ[n]&&n<maxN, s=8; If[x==0, s=s/2]; If[y==0, s=s/2]; If[z==0, s=s/2]; soln2[[(n+1)/2]]+=s], {x, 0, xMax}, {y, 0, yMax}, {z, 0, zMax}]

PROG

(PARI) {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^2 * eta(x^32 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^16 + A)^2 * eta(x^64 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

CROSSREFS

Cf. A006991, A003273, A072068, A072070, A072071, A080918.

Sequence in context: A292144 A300324 A298368 * A230423 A213672 A309244

Adjacent sequences:  A072066 A072067 A072068 * A072070 A072071 A072072

KEYWORD

nonn

AUTHOR

T. D. Noe, Jun 13 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 21:23 EST 2021. Contains 340427 sequences. (Running on oeis4.)