login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298368
Triangle read by rows: T(n, k) = floor((n-1)/2)*floor(n/2)*floor((k-1)/2)*floor(k/2).
1
0, 0, 0, 0, 0, 1, 0, 0, 2, 4, 0, 0, 4, 8, 16, 0, 0, 6, 12, 24, 36, 0, 0, 9, 18, 36, 54, 81, 0, 0, 12, 24, 48, 72, 108, 144, 0, 0, 16, 32, 64, 96, 144, 192, 256, 0, 0, 20, 40, 80, 120, 180, 240, 320, 400, 0, 0, 25, 50, 100, 150, 225, 300, 400, 500, 625
OFFSET
1,9
COMMENTS
T(n, k) is conjectured by Zarankiewicz's conjecture to be the crossing number of the complete bipartite graph K_{k,n}.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
Eric Weisstein's World of Mathematics, Graph Crossing Number.
Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture.
FORMULA
T(n,n) = A030179(n).
From Robert Israel, Jan 17 2018: (Start)
T(n,k) = A002620(n-1)*A002620(k-1).
G.f. as triangle: x^3*y^3*(1+2*x*y+6*x^2*y^2-4*x^3*y-8*x^3*y^2+2*x^4*y+2*x^3*y^3-4*x^4*y^2-2*x^4*y^3+4*x^5*y^2+ x^4*y^4-4*x^5*y^3-2*x^5*y^4+4*x^6*y^3+2*x^7*y^4)/
((1-x*y)^5*(1+x*y)^3*(1-x)^3*(1+x)). (End)
EXAMPLE
First rows are given by:
0;
0, 0;
0, 0, 1;
0, 0, 2, 4;
0, 0, 4, 8, 16;
0, 0, 6, 12, 24, 36;
0, 0, 9, 18, 36, 54, 81;
0, 0, 12, 24, 48, 72, 108, 144;
0, 0, 16, 32, 64, 96, 144, 192, 256;
0, 0, 20, 40, 80, 120, 180, 240, 320, 400;
MAPLE
seq(seq(floor((k-1)/2)*floor(k/2)*floor((n-1)/2)*floor(n/2), k=1..n), n=1..12); # Robert Israel, Jan 17 2018
MATHEMATICA
Table[Floor[(m - 1)/2] Floor[m/2] Floor[(n - 1)/2] Floor[n/2], {n, 11}, {m, n}] // Flatten
Table[Times @@ Floor[{m, m - 1, n, n - 1}/2], {n, 11}, {m, n}] // Flatten
CROSSREFS
Sequence in context: A355335 A292144 A300324 * A072069 A230423 A213672
KEYWORD
nonn,easy,tabl,nice
AUTHOR
Eric W. Weisstein, Jan 17 2018
STATUS
approved