

A191928


Array read by antidiagonals: T(m,n) = floor(m/2)*floor((m1)/2)*floor(n/2)*floor((n1)/2).


2



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 6, 8, 8, 6, 0, 0, 0, 0, 0, 0, 9, 12, 16, 12, 9, 0, 0, 0, 0, 0, 0, 12, 18, 24, 24, 18, 12, 0, 0, 0, 0, 0, 0, 16, 24, 36, 36, 36, 24, 16, 0, 0, 0, 0, 0, 0, 20, 32, 48, 54, 54, 48, 32, 20, 0, 0, 0, 0, 0, 0, 25, 40, 64, 72, 81, 72, 64, 40, 25, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,32


COMMENTS

T(m,n) is conjectured to be the crossing number of the complete bipartite graph K_{m,n}.


LINKS

Table of n, a(n) for n=0..119.
D. McQuillan and R. B. Richter, A parity theorem for drawings of complete and bipartite graphs, Amer. Math. Monthly, 117 (2010), 267273.


FORMULA

T(m,n) = A002620(m1)*A002620(n1).  Michel Marcus, Sep 30 2017


EXAMPLE

Array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 1, 2, 4, 6, 9, 12, ...
0, 0, 0, 2, 4, 8, 12, 18, 24, ...
0, 0, 0, 4, 8, 16, 24, 36, 48, ...
0, 0, 0, 6, 12, 24, 36, 54, 72, ...
0, 0, 0, 9, 18, 36, 54, 81, 108, ...
0, 0, 0, 12, 24, 48, 72, 108, 144, ...


MAPLE

K:=(m, n)>floor(m/2)*floor((m1)/2)*floor(n/2)*floor((n1)/2);


PROG

(PARI) T(n, k) = ((n1)^2\4)*((k1)^2\4);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Sep 30 2017


CROSSREFS

Cf. A000241, A002620.
Sequence in context: A240066 A240067 A300717 * A033148 A281084 A186230
Adjacent sequences: A191925 A191926 A191927 * A191929 A191930 A191931


KEYWORD

nonn,tabl


AUTHOR

N. J. A. Sloane, Jun 19 2011


STATUS

approved



