login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264655
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 1,1 2,2 -1,0 or 0,-1.
8
0, 1, 1, 0, 2, 0, 0, 4, 4, 0, 1, 9, 4, 9, 1, 0, 18, 22, 22, 18, 0, 0, 41, 65, 112, 65, 41, 0, 1, 84, 193, 716, 716, 193, 84, 1, 0, 176, 628, 3100, 6656, 3100, 628, 176, 0, 0, 369, 1905, 14871, 48781, 48781, 14871, 1905, 369, 0, 1, 772, 5929, 73900, 406871, 580796
OFFSET
1,5
COMMENTS
Table starts
.0...1.....0.......0.........1...........0.............0..............1
.1...2.....4.......9........18..........41............84............176
.0...4.....4......22........65.........193...........628...........1905
.0...9....22.....112.......716........3100.........14871..........73900
.1..18....65.....716......6656.......48781........406871........3133028
.0..41...193....3100.....48781......580796.......7644038.......93971260
.0..84...628...14871....406871.....7644038.....159104356.....3198623964
.1.176..1905...73900...3133028....93971260....3198623964...100746278612
.0.369..5929..349328..24130345..1163775908...62394318265..3118543214377
.0.772.18406.1679736.189393503.14482108589.1226341881232.98267901838019
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-3)
k=2: a(n) = 2*a(n-1) +2*a(n-5) -2*a(n-6) +4*a(n-7) -a(n-10)
k=3: [order 15]
k=4: [order 18] for n>21
EXAMPLE
Some solutions for n=4 k=4
..1..6..7..4..9....1..2..3..4..9....5..2..3..4..9....1..2..7..4..9
.10.11..8..2..3...10..7..8.13.14...10..0..1.13.14....6.11.12.13..3
.15.16..0.14.19...15.16..0.18.19...11.16..6.18..8...15.16..0.14..8
.20.17..5.12.13...20.17..5..6.24...20.17.22.19..7...20.10..5.19.24
.21.22.23.24.18...21.22.23.11.12...21.15.23.24.12...21.22.23.17.18
CROSSREFS
Sequence in context: A072070 A137830 A137828 * A264476 A342276 A137505
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 20 2015
STATUS
approved