login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072070 Number of integer solutions to the equation 4*x^2 + y^2 + 8*z^2 = n. 9

%I

%S 1,2,0,0,4,4,0,0,6,6,0,0,8,12,0,0,12,8,0,0,8,8,0,0,8,14,0,0,16,4,0,0,

%T 6,16,0,0,12,20,0,0,24,8,0,0,8,20,0,0,24,18,0,0,24,12,0,0,0,16,0,0,16,

%U 20,0,0,12,8,0,0,16,16,0,0,30,32,0,0,24,16,0,0,24,18,0,0,16,24,0,0,24,16

%N Number of integer solutions to the equation 4*x^2 + y^2 + 8*z^2 = n.

%C Related to primitive congruent numbers A006991.

%C Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and a(n) = 2 A072071(n).

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

%H T. D. Noe, <a href="/A072070/b072070.txt">Table of n, a(n) for n = 0..10000</a>

%H Clay Mathematics Institute, <a href="http://www.claymath.org/prizeproblems/birchsd.htm">The Birch and Swinnerton-Dyer Conjecture</a>

%H Department of Pure Maths., Univ. Sheffield, <a href="http://www.shef.ac.uk/~puremath/theorems/congruent.html">Pythagorean triples and the congruent number problem</a>

%H Karl Rubin, <a href="http://math.Stanford.EDU/~rubin/lectures/sumo/">Elliptic curves and right triangles</a>

%H M. Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of phi(q) * phi(q^4) * phi(q^8) in powers of q where phi() is a Ramanujan theta function. - _Michael Somos_, Jun 09 2012

%F Euler transform of period 32 sequence [2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -5, 2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -3, ...]. - _Michael Somos_, Feb 11 2003

%F a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A014455(n). - _Michael Somos_, Jun 08 2012

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(7/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A080917. - _Michael Somos_, Jul 23 2018

%e a(4) = 4 because (1, 0, 0), (-1, 0, 0), (0, 2, 0) and (0, -2, 0) are solutions.

%e G.f. = 1 + 2*q + 4*q^4 + 4*q^5 + 6*q^8 + 6*q^9 + 8*q^12 + 12*q^13 + 12*q^16 + 8*q^17 + ...

%t maxN=128; soln3=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/8]]; yMax=Ceiling[Sqrt[maxN/2]]; zMax=Ceiling[Sqrt[maxN/16]]; Do[n=4x^2+y^2+8z^2; If[n>0&&n<=maxN/2, s=8; If[x==0, s=s/2]; If[y==0, s=s/2]; If[z==0, s=s/2]; soln3[[n]]+=s], {x, 0, xMax}, {y, 0, yMax}, {z, 0, zMax}]

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^4] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* _Michael Somos_, Jul 23 2018 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^3 * eta(x^16 + A)^3 * eta(x^32 + A)^-2, n))}; /* _Michael Somos_, Feb 11 2003 */

%Y Cf. A006991, A003273, A072068, A072069, A072071, A080917.

%K nonn

%O 0,2

%A _T. D. Noe_, Jun 13 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)