OFFSET
-2,23
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -2..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2) * chi(q) * chi(-q^2) * psi(q^6)^2 / (psi(q^9) * psi(q^18)) in powers of q where psi(), chi() are Ramanujan theta functions.
Euler transform of period 36 sequence [ 1, -2, 1, 0, 1, 0, 1, 0, 0, -2, 1, -2, 1, -2, 1, 0, 1, 0, 1, 0, 1, -2, 1, -2, 1, -2, 0, 0, 1, 0, 1, 0, 1, -2, 1, 0, ...].
a(6*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 3) = 0.
EXAMPLE
q^-2 + q^-1 - 1 + q^2 + q^4 + q^5 - q^8 + q^10 - q^11 - q^16 + q^17 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^3*QP[q^9]*(QP[q^12]^4 / (QP[q]*QP[q^4]^2* QP[q^6]^2*QP[q^18]*QP[q^36]^2)) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<-2, 0, n+=2; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^12 + A)^4 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^2 * eta(x^18 + A) * eta(x^36 + A)^2), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 07 2012
STATUS
approved