login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182032
Expansion of eta(q^2)^3 * eta(q^9) * eta(q^12)^4 / (eta(q) * eta(q^4)^2 * eta(q^6)^2 * eta(q^18) * eta(q^36)^2) in powers of q.
7
1, 1, -1, 0, 1, 0, 1, 1, 0, 0, -1, 0, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 2, 0, -1, 0, 0, 0, -2, 0, 0, -3, 0, 0, -1, 0, 1, 4, 0, 0, 4, 0, 2, 1, 0, 0, -4, 0, 0, -6, 0, 0, -1, 0, -2, 5, 0, 0, 8, 0, -3, 1, 0, 0, -8, 0, -1, -10, 0, 0, -2, 0, 4, 11, 0, 0, 14, 0, 4, 4, 0, 0, -14, 0, 1, -19, 0, 0, -4, 0, -4, 17, 0, 0, 24, 0, -6, 4, 0, 0, -23, 0
OFFSET
-2,23
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2) * chi(q) * chi(-q^2) * psi(q^6)^2 / (psi(q^9) * psi(q^18)) in powers of q where psi(), chi() are Ramanujan theta functions.
Euler transform of period 36 sequence [ 1, -2, 1, 0, 1, 0, 1, 0, 0, -2, 1, -2, 1, -2, 1, 0, 1, 0, 1, 0, 1, -2, 1, -2, 1, -2, 0, 0, 1, 0, 1, 0, 1, -2, 1, 0, ...].
a(6*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 3) = 0.
A062242(n) = a(3*n - 1). A132179(n) = a(6*n - 1). A062242(n) = a(6*n - 2). A092848(n) = a(6*n + 2).
EXAMPLE
q^-2 + q^-1 - 1 + q^2 + q^4 + q^5 - q^8 + q^10 - q^11 - q^16 + q^17 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^3*QP[q^9]*(QP[q^12]^4 / (QP[q]*QP[q^4]^2* QP[q^6]^2*QP[q^18]*QP[q^36]^2)) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<-2, 0, n+=2; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^12 + A)^4 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^2 * eta(x^18 + A) * eta(x^36 + A)^2), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 07 2012
STATUS
approved