login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132179
Expansion of f(-x^2)^2 * f(x, x^2) / f(-x^3)^3 in powers of x where f(,) is a Ramanujan theta function.
16
1, 1, -1, 1, 0, -3, 4, 1, -6, 5, 1, -10, 11, 4, -19, 17, 4, -31, 31, 9, -50, 46, 11, -79, 77, 21, -122, 112, 28, -183, 173, 46, -273, 249, 62, -396, 370, 98, -573, 521, 130, -815, 751, 193, -1149, 1041, 261, -1599, 1461, 373, -2214, 1998, 498, -3031, 2750, 696, -4125, 3708, 923, -5567
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (chi(-x) / chi(-x^3)^3) * (psi(x) / psi(x^3))^2 in powers of x where chi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 05 2015
Expansion of q^(1/6) * eta(q^2)^3 / ( eta(q) * eta(q^3) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 1, -2, 2, -2, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^6)/q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u^2 - 3*v)^3 - 4*(u^2*v^2 - v^3)*(u^2*v^2 - 2*v^3).
G.f.: Product_{k>0} (1 + x^k)^2 / ( (1 - x^k + x^(2*k)) * (1 + x^k + x^(2*k))^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132180.
Convolution of A092848 and A058487. - Michael Somos, Feb 05 2015
a(n) = (-1)^n * A254525(n) = A062242(2*n) = A062244(2*n) = A132301(2*n) = A182036(3*n). - Michael Somos, Feb 05 2015
a(2*n) = A230256(n). a(2*n + 1) = A233037(n). - Michael Somos, Feb 05 2015
EXAMPLE
G.f. = 1 + x - x^2 + x^3 - 3*x^5 + 4*x^6 + x^7 - 6*x^8 + 5*x^9 + x^10 + ...
G.f. = 1/q + q^5 - q^11 + q^17 - 3*q^29 + 4*q^35 + q^41 - 6*q^47 + 5*q^53 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 / (QPochhammer[ x] QPochhammer[ x^3] QPochhammer[ x^6]), {x, 0, n}]; (* Michael Somos, Feb 05 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^6 + A)), n))};
KEYWORD
sign
AUTHOR
Michael Somos, Aug 12 2007
STATUS
approved