login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132301
Expansion of f(-x, -x^5) * f(-x)^2 / f(-x^6)^3 in powers of x where f(, ) and f() are Ramanujan theta functions.
6
1, -3, 1, 3, -1, 0, 1, -6, 0, 6, -3, 3, 4, -12, 1, 12, -6, 3, 5, -24, 1, 24, -10, 6, 11, -42, 4, 42, -19, 12, 17, -72, 4, 69, -31, 18, 31, -120, 9, 114, -50, 30, 46, -189, 11, 180, -79, 48, 77, -294, 21, 276, -122, 72, 112, -450, 28, 420, -183, 108, 173, -672
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * eta(q)^3 / (eta(q^2) * eta(q^3) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ -3, -2, -2, -2, -3, 0, ...].
Given g.f. A(x), then B(q) = A(q^3) / (3*q) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v^2 - 2*u)^3 - u^4 * (2*u - 3*v^2) * (4*u - 3*v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132302.
a(2*n) = A132179(n). a(2*n + 1) = -3 * A092848(n). - Michael Somos, Nov 01 2015
EXAMPLE
G.f. = 1 - 3*x + x^2 + 3*x^3 - x^4 + x^6 - 6*x^7 + 6*x^9 - 3*x^10 + 3*x^11 + ...
G.f. = 1/q - 3*q^2 + q^5 + 3*q^8 - q^11 + q^17 - 6*q^20 + 6*q^26 - 3*q^29 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x]^2 / QPochhammer[ x^6]^2, {x, 0, n}]; (* Michael Somos, Nov 01 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 17 2007
STATUS
approved