OFFSET
0,8
COMMENTS
The triangle of coefficients of the Bell polynomials is A268441. For the definition of the inverse Bell polynomials see the link 'Bell transform'.
LINKS
Peter Luschny, First 21 rows, flattened
Peter Luschny, The Bell transform
Peter Luschny, SageMath implementation
EXAMPLE
[[1]],
[[0], [1]],
[[0], [-1], [1]],
[[0], [3, -1], [-3], [1]],
[[0], [-15, 10, -1], [15, -4], [-6], [1]],
[[0], [105, -105, 10, 15, -1], [-105, 60, -5], [45, -10], [-10], [1]]
MATHEMATICA
A268442Matrix[dim_] := Module[ {v, r, A},
v = Table[Subscript[x, j], {j, 1, dim}];
r = Table[Subscript[x, j]->1, {j, 1, n}];
A = Table[Table[BellY[n, k, v], {k, 0, dim}], {n, 0, dim}];
Table[Table[MonomialList[Inverse[A][[n, k]]/. r[[1]],
v, Lexicographic] /. r, {k, 1, n}] // Flatten, {n, 1, dim}]];
A268442Matrix[7] // Flatten
PROG
(Sage) # see link
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Feb 06 2016
STATUS
approved