login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182036
Expansion of q^(1/2) * eta(q^2)^2 * eta(q^6)^2 / (eta(q) * eta(q^9)^3) in powers of q.
4
1, 1, 0, 1, 0, 0, -1, -2, 0, 1, 4, 0, 0, -1, 0, -3, -8, 0, 4, 14, 0, 1, -4, 0, -6, -23, 0, 5, 40, 0, 1, -10, 0, -10, -60, 0, 11, 98, 0, 4, -24, 0, -19, -140, 0, 17, 224, 0, 4, -54, 0, -31, -304, 0, 31, 478, 0, 9, -112, 0, -50, -627, 0, 46, 968, 0, 11, -224
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 18 sequence [1, -1, 1, -1, 1, -3, 1, -1, 4, -1, 1, -3, 1, -1, 1, -1, 1, 0, ...].
a(3*n) = A132179(n). a(3*n + 2) = 0.
Expansion of psi(x) * f(-x^6)^2 / f(-x^9)^3 in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Aug 10 2017
EXAMPLE
G.f. = 1 + x + x^3 - x^6 - 2*x^7 + x^9 + 4*x^10 - x^13 - 3*x^15 - 8*x^16 + ...
G.f. = 1/q + q + q^5 - q^11 - 2*q^13 + q^17 + 4*q^19 - q^25 - 3*q^29 - 8*q^31 + ...
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A182036[n_] := SeriesCoefficient[q^(1/2)*(eta[q^2]* eta[q^6])^2/(eta[q]*eta[q^9]^3), {q, 0, n}]; Table[A182036[n], {n, 0, 50}] (* G. C. Greubel, Aug 09 2017 *)
a[ n_] := SeriesCoefficient[ 1/2 x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ x^6]^2 / QPochhammer[ x^9]^3, {x, 0, n}]; (* Michael Somos, Aug 10 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^9 + A)^3), n))};
CROSSREFS
Cf. A132179.
Sequence in context: A018843 A152836 A152837 * A334173 A174996 A286815
KEYWORD
sign
AUTHOR
Michael Somos, Apr 07 2012
STATUS
approved