login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182033 Expansion of c(q^2)^2 / (c(q) * c(q^6)) in powers of q where c() is a cubic AGM theta function. 4
1, -1, 1, 1, 0, -1, 1, 0, 0, -1, 0, 2, -1, 0, -2, 0, 0, -1, 1, 0, 4, 2, 0, -4, 0, 0, -1, -2, 0, 8, -3, 0, -8, -1, 0, -2, 4, 0, 14, 4, 0, -14, 1, 0, -4, -4, 0, 24, -6, 0, -23, -1, 0, -6, 5, 0, 40, 8, 0, -38, 1, 0, -10, -8, 0, 63, -10, 0, -60, -2, 0, -16, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,12

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

FORMULA

Expansion of eta(q) * eta(q^6)^7 / (eta(q^2)^2 * eta(q^3)^3 * eta(q^18)^3) in powers of q.

Euler transform of period 18 sequence [ -1, 1, 2, 1, -1, -3, -1, 1, 2, 1, -1, -3, -1, 1, 2, 1, -1, 0, ...].

a(3*n) = 0 unless n=0. a(3*n + 1) = a(6*n + 2) = A092848(n). a(3*n + 2) = A062242(n). a(6*n + 4) = a(12*n + 8) = - A164614(n). a(6*n + 5) = A132179(n).

Convolution inverse of A122830.

EXAMPLE

1/q - 1 + q + q^2 - q^4 + q^5 - q^8 + 2*q^10 - q^11 - 2*q^13 - q^16 + ...

MATHEMATICA

eta[x_] := x^(1/24)*QPochhammer[x]; A182033[n_] := SeriesCoefficient[ eta[q]*eta[q^6]^7/(eta[q^2]^2*eta[q^3]^3*eta[q^18]^3 ), {q, 0, n}]; Table[A182033[n], {n, -1, 50}] (* G. C. Greubel, Aug 18 2017 *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^2 * eta(x^3 + A)^3 * eta(x^18 + A)^3), n))}

CROSSREFS

Cf. A062242, A092848, A122830, A133179, A164614.

Sequence in context: A228817 A110399 A193275 * A112214 A246962 A112608

Adjacent sequences:  A182030 A182031 A182032 * A182034 A182035 A182036

KEYWORD

sign

AUTHOR

Michael Somos, Apr 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)