The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182031 Expansion of q^(-5/24) * (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2))^4 in powers of q. 1
 1, 4, 18, 53, 163, 414, 1059, 2431, 5553, 11844, 25013, 50391, 100362, 193136, 367371, 680705, 1247247, 2238408, 3975218, 6941384, 12003156, 20465599, 34581525, 57737205, 95601892, 156665029, 254777220, 410580026, 657015874 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES H.-C. Chan, On the Andrews-Schur proof of the Rogers-Ramanujan identities, Ramanujan J. 23 (2010), no. 1-3, 417-431. see p. 430 Theorem 7. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (psi(x^3) * phi(-x^3))^3 / (psi(x) * phi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions. Euler transform of period 6 sequence [ 4, 8, 1, 8, 4, 2, ...]. A002513(3*n + 2) = 3 * a(n). EXAMPLE 1 + 4*x + 18*x^2 + 53*x^3 + 163*x^4 + 414*x^5 + 1059*x^6 + 2431*x^7 + ... q^5 + 4*q^13 + 18*q^21 + 53*q^29 + 163*q^37 + 414*q^45 + 1059*q^53 + ... MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/8)*(eta[q^3]*eta[q^6])^3/(eta[q]*eta[q^2])^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 16 2018 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A))^4, n))} (PARI) q='q+O('q^99); Vec((eta(q^3)*eta(q^6))^3/(eta(q)*eta(q^2))^4) \\ Altug Alkan, Apr 16 2018 CROSSREFS Cf. A002513. Sequence in context: A297945 A320544 A020644 * A212250 A229788 A242206 Adjacent sequences:  A182028 A182029 A182030 * A182032 A182033 A182034 KEYWORD nonn AUTHOR Michael Somos, Apr 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 12:46 EDT 2021. Contains 345164 sequences. (Running on oeis4.)