login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349629
Numerators of the Dirichlet inverse of the abundancy index, sigma(n)/n.
3
1, -3, -4, 1, -6, 2, -8, 0, 1, 9, -12, -2, -14, 12, 8, 0, -18, -1, -20, -3, 32, 18, -24, 0, 1, 21, 0, -4, -30, -12, -32, 0, 16, 27, 48, 1, -38, 30, 56, 0, -42, -16, -44, -6, -2, 36, -48, 0, 1, -3, 24, -7, -54, 0, 72, 0, 80, 45, -60, 4, -62, 48, -8, 0, 84, -24, -68, -9, 32, -72, -72, 0, -74, 57, -4, -10, 96, -28
OFFSET
1,2
COMMENTS
Because the ratio A000203(n)/n [known as the abundancy index of n] is multiplicative, so is also its Dirichlet inverse. This sequence gives the numerator of that ratio when presented in its lowest terms, while A349630 gives the denominators. See the examples.
LINKS
EXAMPLE
The ratio a(n)/A349630(n) for n = 1..15: 1/1, -3/2, -4/3, 1/2, -6/5, 2/1, -8/7, 0/1, 1/3, 9/5, -12/11, -2/3, -14/13, 12/7, 8/5.
MATHEMATICA
f[1] = 1; f[n_] := f[n] = -DivisorSum[n, f[#] * DivisorSigma[1, n/#] * #/n &, # < n &]; Numerator @ Array[f, 100] (* Amiram Eldar, Nov 28 2021 *)
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
Abi(n) = (sigma(n)/n);
vDirInv_of_Abi = DirInverseCorrect(vector(up_to, n, Abi(n)));
A349629(n) = numerator(vDirInv_of_Abi[n]);
CROSSREFS
Cf. A349630 (denominators).
Sequence in context: A276433 A343226 A030707 * A254525 A132179 A378210
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Nov 27 2021
STATUS
approved