login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276433
Irregular triangle read by rows: T(n,k) is the number of partitions of n having k distinct parts i of multiplicity i+1 (n>=0).
6
1, 1, 1, 1, 3, 4, 1, 6, 1, 8, 3, 12, 3, 18, 3, 1, 24, 6, 32, 10, 45, 10, 1, 59, 17, 1, 79, 21, 1, 104, 28, 3, 137, 37, 2, 177, 50, 4, 229, 64, 4, 295, 82, 8, 377, 105, 8, 477, 139, 10, 1, 605, 174, 13, 761, 220, 21, 956, 275, 24, 1193, 350, 31, 1
OFFSET
0,5
COMMENTS
Sum of entries in row n is A000041(n) (the partition numbers).
T(n,0) = A277099(n).
Sum(k*T(n,k), k>=0) = A276434(n).
LINKS
FORMULA
G.f.: G(t,x) = Product_{i>=1} ((t-1)*x^(i(i+1)) + 1/(1-x^i)).
EXAMPLE
The partition [1,1,3,3,3,3,4] has 2 parts i of multiplicity i+1: 1 and 3.
T(5,1) = 1, counting [1,1,3].
T(6,1) = 3, counting [1,1,4], [1,1,2,2], and [2,2,2].
T(8,2) = 1, counting [1,1,2,2,2].
Triangle starts:
1;
1;
1,1;
3;
4,1;
6,1;
8,3.
MAPLE
G := mul((t-1)*x^(i*(i+1))+1/(1-x^i), i = 1 .. 100): Gser := simplify(series(G, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(Gser, x, n)) end do: for n from 0 to 30 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(
`if`(i+1=j, x, 1)*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..30); # Alois P. Heinz, Sep 30 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i + 1 == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz *)
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 30 2016
STATUS
approved