login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) is the number of partitions of n having k distinct parts i of multiplicity i+1 (n>=0).
6

%I #17 Nov 28 2016 09:06:46

%S 1,1,1,1,3,4,1,6,1,8,3,12,3,18,3,1,24,6,32,10,45,10,1,59,17,1,79,21,1,

%T 104,28,3,137,37,2,177,50,4,229,64,4,295,82,8,377,105,8,477,139,10,1,

%U 605,174,13,761,220,21,956,275,24,1193,350,31,1

%N Irregular triangle read by rows: T(n,k) is the number of partitions of n having k distinct parts i of multiplicity i+1 (n>=0).

%C Sum of entries in row n is A000041(n) (the partition numbers).

%C T(n,0) = A277099(n).

%C Sum(k*T(n,k), k>=0) = A276434(n).

%H Alois P. Heinz, <a href="/A276433/b276433.txt">Rows n = 0..1000, flattened</a>

%F G.f.: G(t,x) = Product_{i>=1} ((t-1)*x^(i(i+1)) + 1/(1-x^i)).

%e The partition [1,1,3,3,3,3,4] has 2 parts i of multiplicity i+1: 1 and 3.

%e T(5,1) = 1, counting [1,1,3].

%e T(6,1) = 3, counting [1,1,4], [1,1,2,2], and [2,2,2].

%e T(8,2) = 1, counting [1,1,2,2,2].

%e Triangle starts:

%e 1;

%e 1;

%e 1,1;

%e 3;

%e 4,1;

%e 6,1;

%e 8,3.

%p G := mul((t-1)*x^(i*(i+1))+1/(1-x^i), i = 1 .. 100): Gser := simplify(series(G, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(Gser, x, n)) end do: for n from 0 to 30 do seq(coeff(P[n],t,k),k = 0 .. degree(P[n])) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(n, i) option remember; expand(

%p `if`(n=0, 1, `if`(i<1, 0, add(

%p `if`(i+1=j, x, 1)*b(n-i*j, i-1), j=0..n/i))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):

%p seq(T(n), n=0..30); # _Alois P. Heinz_, Sep 30 2016

%t b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i + 1 == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* _Jean-François Alcover_, Nov 28 2016 after _Alois P. Heinz_ *)

%Y Cf. A000041, A276427, A276428, A276429, A276434, A277099, A277100, A277101, A277102.

%K nonn,tabf

%O 0,5

%A _Emeric Deutsch_, Sep 30 2016