login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276428
Sum over all partitions of n of the number of distinct parts i of multiplicity i.
10
0, 1, 0, 1, 2, 3, 3, 6, 7, 12, 15, 22, 27, 40, 49, 68, 87, 116, 145, 193, 239, 311, 387, 494, 611, 776, 952, 1193, 1464, 1817, 2214, 2733, 3315, 4060, 4911, 5974, 7195, 8713, 10448, 12585, 15048, 18039, 21486, 25660, 30462, 36231, 42888, 50820, 59972, 70843, 83354
OFFSET
0,5
LINKS
Philip Cuthbertson, David J. Hemmer, Brian Hopkins, and William J. Keith, Partitions with fixed points in the sequence of first-column hook lengths, arXiv:2401.06254 [math.CO], 2024.
FORMULA
a(n) = Sum_{k>=0} k*A276427(n,k).
G.f.: g(x) = Sum_{i>=1} (x^{i^2}*(1-x^i))/Product_{i>=1} (1-x^i).
EXAMPLE
a(5) = 3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1',2',2], [1,1,3], [2,3], [1',4], [5] of 5 only the marked parts satisfy the requirement.
MAPLE
g := (sum(x^(i^2)*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> p+`if`(i<>j, 0,
[0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i==j, x, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; a[n_] := (row = T[n]; row.Range[0, Length[row]-1]); Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz's Maple code for A276427 *)
PROG
(PARI) apply( A276428(n, s, c)={forpart(p=n, c=1; for(i=1, #p, p[i]==if(i<#p, p[i+1])&&c++&&next; c==p[i]&&s++; c=1)); s}, [0..20]) \\ M. F. Hasler, Oct 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 19 2016
STATUS
approved