OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Philip Cuthbertson, David J. Hemmer, Brian Hopkins, and William J. Keith, Partitions with fixed points in the sequence of first-column hook lengths, arXiv:2401.06254 [math.CO], 2024.
FORMULA
a(n) = Sum_{k>=0} k*A276427(n,k).
G.f.: g(x) = Sum_{i>=1} (x^{i^2}*(1-x^i))/Product_{i>=1} (1-x^i).
EXAMPLE
a(5) = 3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1',2',2], [1,1,3], [2,3], [1',4], [5] of 5 only the marked parts satisfy the requirement.
MAPLE
g := (sum(x^(i^2)*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> p+`if`(i<>j, 0,
[0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i==j, x, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; a[n_] := (row = T[n]; row.Range[0, Length[row]-1]); Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz's Maple code for A276427 *)
PROG
(PARI) apply( A276428(n, s, c)={forpart(p=n, c=1; for(i=1, #p, p[i]==if(i<#p, p[i+1])&&c++&&next; c==p[i]&&s++; c=1)); s}, [0..20]) \\ M. F. Hasler, Oct 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 19 2016
STATUS
approved