login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276428 Sum over all partitions of n of the number of distinct parts i of multiplicity i. 10
0, 1, 0, 1, 2, 3, 3, 6, 7, 12, 15, 22, 27, 40, 49, 68, 87, 116, 145, 193, 239, 311, 387, 494, 611, 776, 952, 1193, 1464, 1817, 2214, 2733, 3315, 4060, 4911, 5974, 7195, 8713, 10448, 12585, 15048, 18039, 21486, 25660, 30462, 36231, 42888, 50820, 59972, 70843, 83354 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k>=0} k*A276427(n,k).

G.f.: g(x) = Sum_{i>=1} (x^{i^2}*(1-x^i))/Product_{i>=1} (1-x^i).

EXAMPLE

a(5) = 3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1',2',2], [1,1,3], [2,3], [1',4], [5] of 5 only the marked parts satisfy the requirement.

MAPLE

g := (sum(x^(i^2)*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);

# second Maple program:

b:= proc(n, i) option remember; `if`(n=0, [1, 0],

`if`(i<1, 0, add((p-> p+`if`(i<>j, 0,

[0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))

end:

a:= n-> b(n$2)[2]:

seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016

MATHEMATICA

b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i==j, x, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; a[n_] := (row = T[n]; row.Range[0, Length[row]-1]); Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz's Maple code for A276427 *)

PROG

(PARI) apply( A276428(n, s, c)={forpart(p=n, c=1; for(i=1, #p, p[i]==if(i<#p, p[i+1])&&c++&&next; c==p[i]&&s++; c=1)); s}, [0..20]) \\ M. F. Hasler, Oct 27 2019

CROSSREFS

Cf. A276427, A276434, A277101; A114638, A116861.

Sequence in context: A121833 A091606 A027037 * A020878 A158278 A187505

Adjacent sequences: A276425 A276426 A276427 * A276429 A276430 A276431

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Sep 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 07:39 EDT 2023. Contains 361645 sequences. (Running on oeis4.)