login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum over all partitions of n of the number of distinct parts i of multiplicity i.
10

%I #23 Feb 01 2024 00:27:41

%S 0,1,0,1,2,3,3,6,7,12,15,22,27,40,49,68,87,116,145,193,239,311,387,

%T 494,611,776,952,1193,1464,1817,2214,2733,3315,4060,4911,5974,7195,

%U 8713,10448,12585,15048,18039,21486,25660,30462,36231,42888,50820,59972,70843,83354

%N Sum over all partitions of n of the number of distinct parts i of multiplicity i.

%H Alois P. Heinz, <a href="/A276428/b276428.txt">Table of n, a(n) for n = 0..1000</a>

%H Philip Cuthbertson, David J. Hemmer, Brian Hopkins, and William J. Keith, <a href="https://arxiv.org/abs/2401.06254">Partitions with fixed points in the sequence of first-column hook lengths</a>, arXiv:2401.06254 [math.CO], 2024.

%F a(n) = Sum_{k>=0} k*A276427(n,k).

%F G.f.: g(x) = Sum_{i>=1} (x^{i^2}*(1-x^i))/Product_{i>=1} (1-x^i).

%e a(5) = 3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1',2',2], [1,1,3], [2,3], [1',4], [5] of 5 only the marked parts satisfy the requirement.

%p g := (sum(x^(i^2)*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);

%p # second Maple program:

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0],

%p `if`(i<1, 0, add((p-> p+`if`(i<>j, 0,

%p [0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))

%p end:

%p a:= n-> b(n$2)[2]:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Sep 19 2016

%t b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i==j, x, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; a[n_] := (row = T[n]; row.Range[0, Length[row]-1]); Table[a[n], {n, 0, 60}] // Flatten (* _Jean-François Alcover_, Nov 28 2016, after _Alois P. Heinz_'s Maple code for A276427 *)

%o (PARI) apply( A276428(n,s,c)={forpart(p=n,c=1;for(i=1,#p,p[i]==if(i<#p, p[i+1])&&c++&&next; c==p[i]&&s++; c=1));s}, [0..20]) \\ _M. F. Hasler_, Oct 27 2019

%Y Cf. A276427, A276434, A277101; A114638, A116861.

%K nonn

%O 0,5

%A _Emeric Deutsch_, Sep 19 2016