login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121833
Expansion of 1/(1-x^2-x^3-x^6).
2
1, 0, 1, 1, 1, 2, 3, 3, 6, 7, 10, 15, 20, 28, 41, 55, 79, 111, 154, 218, 306, 427, 603, 844, 1184, 1665, 2334, 3276, 4602, 6454, 9062, 12721, 17850, 25059, 35173, 49363, 69294, 97257, 136507, 191610, 268937, 377480, 529841, 743674, 1043828, 1465125
OFFSET
0,6
COMMENTS
Number of compositions of n into parts 2, 3, and 6. [Joerg Arndt, Sep 03 2013]
LINKS
S. Dominique Andres, On Multiperiodic Infinite Recursions and Their Finite Core, J. Int. Seq. 14 (2011) # 11.2.7
FORMULA
a(n) = a(n-2) + a(n-3) + a(n-6).
G.f.: -1 / ( (1+x)*(x^5-x^4+x^3+x-1) ). - R. J. Mathar, Aug 09 2017
MATHEMATICA
CoefficientList[Series[1 / (1 - x^2 - x^3 - x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 03 2013 *)
LinearRecurrence[{0, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 2}, 50] (* Harvey P. Dale, Dec 16 2016 *)
PROG
(Magma) I:=[1, 0, 1, 1, 1, 2]; [n le 6 select I[n] else Self(n-2)+Self(n-3)+Self(n-6): n in [1..50]]; // Vincenzo Librandi, Sep 03 2013
CROSSREFS
Sequence in context: A022474 A194189 A028249 * A091606 A027037 A276428
KEYWORD
easy,nonn
AUTHOR
Jon E. Schoenfield, Aug 27 2006
STATUS
approved