The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027037 Diagonal sum of left-justified array T given by A027023. 2
 1, 1, 2, 3, 3, 6, 7, 11, 16, 21, 33, 48, 65, 101, 146, 203, 311, 450, 635, 963, 1396, 1989, 2993, 4348, 6233, 9329, 13574, 19543, 29135, 42446, 61303, 91123, 132884, 192377, 285309, 416384, 603925, 894069, 1305618, 1896495, 2803611, 4096182, 5957183, 8796287 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k=0..n} A027023(n-k, k). - Sean A. Irvine, Oct 22 2019 MAPLE T:= proc(n, k) option remember;       if n<0 or k>2*n then 0     elif k<3 or k=2*n then 1     else add(T(n-1, k-j), j=1..3)       fi     end: seq( add(T(n-k, k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019 MATHEMATICA T[n_, k_]:= T[n, k]= If[n<0 || k>2*n, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 05 2019 *) PROG (Sage) @CachedFunction def T(n, k):     if (n<0 or k>2*n): return 0     elif (k<3 or k==2*n): return 1     else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n-k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019 CROSSREFS Sequence in context: A028249 A121833 A091606 * A276428 A020878 A158278 Adjacent sequences:  A027034 A027035 A027036 * A027038 A027039 A027040 KEYWORD nonn AUTHOR EXTENSIONS More terms from Sean A. Irvine, Oct 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 17:50 EDT 2021. Contains 343586 sequences. (Running on oeis4.)