login
A027037
Diagonal sum of left-justified array T given by A027023.
2
1, 1, 2, 3, 3, 6, 7, 11, 16, 21, 33, 48, 65, 101, 146, 203, 311, 450, 635, 963, 1396, 1989, 2993, 4348, 6233, 9329, 13574, 19543, 29135, 42446, 61303, 91123, 132884, 192377, 285309, 416384, 603925, 894069, 1305618, 1896495, 2803611, 4096182, 5957183, 8796287
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A027023(n-k, k). - Sean A. Irvine, Oct 22 2019
MAPLE
T:= proc(n, k) option remember;
if n<0 or k>2*n then 0
elif k<3 or k=2*n then 1
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n-k, k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0 || k>2*n, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 05 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0 or k>2*n): return 0
elif (k<3 or k==2*n): return 1
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n-k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019
CROSSREFS
Sequence in context: A028249 A121833 A091606 * A276428 A020878 A158278
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 21 2019
STATUS
approved