login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A027038
Diagonal sum of right-justified array T given by A027023.
2
1, 1, 2, 5, 7, 18, 43, 103, 264, 687, 1809, 4836, 13049, 35493, 97218, 267857, 741791, 2063574, 5763595, 16155403, 45429488, 128121191, 362287433, 1026918632, 2917313257, 8304598593, 23685134746, 67669857661, 193652803391
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} T(n-k, 2*n-3*k), where T = A027023. - G. C. Greubel, Nov 05 2019
MAPLE
T:= proc(n, k) option remember;
if k<3 or k=2*n then 1
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n-k, 2*n-3*k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, 2*n-3*k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 05 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<3 or k==2*n): return 1
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n-k, 2*n-3*k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019
CROSSREFS
Sequence in context: A247323 A099357 A306918 * A341322 A173929 A173299
KEYWORD
nonn
STATUS
approved