login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028249
Molien series for complete weight enumerator of self-dual code over GF(4) containing 1^n.
0
1, 1, 1, 2, 3, 3, 6, 7, 8, 11, 14, 15, 21, 24, 27, 33, 39, 42, 52, 58, 64, 74, 84, 90, 105, 115, 125, 140, 155, 165, 186, 201, 216, 237, 258, 273, 301, 322, 343, 371, 399, 420, 456, 484, 512, 548, 584, 612, 657, 693
OFFSET
0,4
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,2,-1,-1,0,1,1,-1)
FORMULA
G.f.: (1+x^6)/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)). - Ralf Stephan, Apr 29 2014
a(n) ~ 1/216*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^2+x^4 ) / ( (1-x+x^2)*(1+x)^2*(1+x+x^2)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014
MAPLE
(1+x^12)/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^12));
CROSSREFS
Sequence in context: A025499 A022474 A194189 * A121833 A091606 A027037
KEYWORD
nonn
AUTHOR
STATUS
approved