OFFSET
0,5
COMMENTS
For p prime, a(p) == 1 (mod p) and a(p+1) == 1 (mod p). - Mélika Tebni, Mar 22 2022
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..495
FORMULA
Row sums of A352607. - Mélika Tebni, Mar 22 2022
EXAMPLE
From Mélika Tebni, Mar 22 2022: (Start)
a(11) = Sum_{k=0..5} (-1)^k*Bell(k)*A137375(11, k) = 1*(0) - 1*(-1) + 2*(1012) - 5*(-22935) + 15*(56980) - 52*(-17325) = 1872300. (End)
MAPLE
h:= proc(n, m) option remember;
`if`(n=0, 1, h(n-1, m+1)+m*h(n-1, m))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*h(j, -1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Apr 14 2023
MATHEMATICA
A352607[n_, k_] := BellB[k]*Sum[(-1)^(k + j)*Binomial[n, n - k + j]* StirlingS2[n - k + j, j], {j, 0, k}]; a[n_] := Sum[A352607[n, k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 21 2023 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(exp(exp(x) - 1 - x) - 1))) \\ Michel Marcus, Mar 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved