OFFSET
0,9
COMMENTS
Also called "associated Stirling numbers of the second kind" by Riordan in the signless form with different offset A008299.
Old name was: Triangular sequence from coefficients of Mahler polynomials from expansion of: p(x) = exp(x*(1 + t - exp(t))) with weight n!:M(x,n).
M(n,x) = sum(k=0..n, (x)^k*sum(j=0..k, binomial(n,k-j)*stirling2(n-k+j,j)*(-1)^j)). - Vladimir Kruchinin, Jan 13 2012
REFERENCES
J. Riordan, Introduction to Combinatory Analysis, Wiley, New York, 1958.
LINKS
L. Carlitz, The coefficients in an asymptotic expansion, Proc. Amer. Math. Soc. 16 (1965) 248-252.
A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
V. Kruchinin, D. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, arXiv: 1211.0099 [math.NT], 2012.
D. V. Kruchinin and V. V. Kruchinin, Explicit Formulas for Some Generalized Polynomials, Appl. Math. Inf. Sci. 7, No. 5, 2083-2088 (2013).
Andrew Elvey Price, Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
L. M. Smiley, Completion of a rational function sequence of Carlitz, arXiv:math/0006106 [math.CO], 2000.
E. W. Weisstein, Mahler Polynomial.
FORMULA
T(n,k) = Sum_{j=0..k} C(n,k-j)*stirling2(n-k+j,j)*(-1)^(j). - Vladimir Kruchinin, Jan 13 2012
T(n,k) = (-1)^k*Sum_{j=0..n-k} C(j,n-2*k)*E2(n-k,n-k-j-1) for n>0, T(0,0) = 1, where E2(n,k) are the second-order Eulerian numbers A201637. - Peter Luschny, Nov 27 2012
Let p(x,t) = exp(x*(1+t-exp(t))) then T(n,k) = [x^k](n!*[t^n] series(p(x,t))) where [s^m] denotes the coefficient of s^m. - Peter Luschny, Dec 01 2012
EXAMPLE
[ 0] 1;
[ 1] 0;
[ 2] 0, -1;
[ 3] 0, -1;
[ 4] 0, -1, 3;
[ 5] 0, -1, 10;
[ 6] 0, -1, 25, -15;
[ 7] 0, -1, 56, -105;
[ 8] 0, -1, 119, -490, 105;
[ 9] 0, -1, 246, -1918, 1260;
[10] 0, -1, 501, -6825, 9450, -945;
MAPLE
A137375 := proc(n, k) if n = 0 then 1 else
add(binomial(j, n-2*k)* combinat[eulerian2](n-k, n-k-j-1), j=(0..n-k-1))*(-1)^k fi end: for n from 0 to 9 do seq(A137375(n, k), k=(0..n/2)) od; # Peter Luschny, Dec 01 2012
MATHEMATICA
Clear[p, x, t] p[t_] = Exp[x*(1 + t - Exp[t])]; Table[ ExpandAll[n!* SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}] a = Table[ CoefficientList[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a];
Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^j, {j, 0, k}], {n, 0, 15}, {k, 0, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
PROG
(Maxima) T(n, k):=sum(binomial(n, k-j)*stirling2(n-k+j, j)*(-1)^(j), j, 0, k); /* Vladimir Kruchinin, Jan 13 2012 */
(Sage)
def A137375(n, k): return add(binomial(n, k-j)*(-1)^j*stirling_number2(n-k+j, j) for j in (0..k))
for n in range(11):
[A137375(n, k) for k in (0..n//2)] # Peter Luschny, Dec 01 2012
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, Apr 09 2008
EXTENSIONS
Edited and simpler definition by Peter Luschny, Nov 27 2012
STATUS
approved