This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201637 Triangle of second-order Eulerian numbers T(n,k) (n>=0, 0 <= k <= n) read by rows. 13
 1, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This version indexes the Eulerian numbers in the same way as Graham et al.'s Concrete Mathematics. This indexing is also used by Maple. The indexing as used by Riordan, Comtet and others, is given in A008517, which is the main entry for the second-order Eulerian numbers. REFERENCES R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 256. LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017. EXAMPLE ...                                     [1,   0]  [1,   2,     0]  [1,   8,     6,      0]  [1,  22,    58,     24,      0]  [1,  52,   328,    444,    120,      0]  [1, 114,  1452,   4400,   3708,    720,      0]  [1, 240,  5610,  32120,  58140,  33984,   5040,     0]  [1, 494, 19950, 195800, 644020, 785304, 341136, 40320,  0] MAPLE A201637 := (n, k) -> combinat[eulerian2](n, k): for n from 0 to 9 do seq(A201637(n, k), k=0..n) od; MATHEMATICA t[0, 0] = 1; t[n_, m_] = Sum[(-1)^(n+k)*Binomial[2*n+1, k]*StirlingS1[2*n-m-k, n-m-k], {k, 0, n-m-1}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *) PROG (Sage) @CachedFunction def eulerian2(n, k):     if k==0: return 1     if k==n: return 0     return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1) for n in (0..9): [eulerian2(n, k) for k in(0..n)] (PARI) for(n=0, 10, for(m=0, n, print1(if(m==0 || n==0, 1, sum(k=0, n-m-1, (-1)^(n+k)* binomial(2*n+1, k)*stirling(2*n-m-k, n-m-k, 1))), ", "))) \\ G. C. Greubel, Oct 24 2017 CROSSREFS Cf. A008517, A173018. Columns 2 and 3 respectively give A004301 and A006260. T(2n,n) gives A290306. Sequence in context: A309993 A248673 A278881 * A055141 A055140 A191936 Adjacent sequences:  A201634 A201635 A201636 * A201638 A201639 A201640 KEYWORD nonn,tabl AUTHOR Peter Luschny, Nov 11 2012 EXTENSIONS Terms a(52) onward added by G. C. Greubel, Oct 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 21:06 EDT 2019. Contains 327088 sequences. (Running on oeis4.)