login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337444
Expansion of e.g.f. (1 + 2*x) * exp(x) / (sec(x) + tan(x)).
0
1, 2, 0, -1, -8, -5, -50, 79, -696, 3375, -22830, 156719, -1205244, 9952735, -88770370, 847488719, -8633147152, 93430030975, -1070638898070, 12950169210479, -164886839860420, 2204373939190495, -30873660197736330, 452059981437456399, -6906967824497129048
OFFSET
0,2
COMMENTS
Inverse boustrophedon transform of odd numbers.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (2*k+1) * A000111(n-k).
MATHEMATICA
nmax = 24; CoefficientList[Series[(1 + 2 x) Exp[x]/(Sec[x] + Tan[x]), {x, 0, nmax}], x] Range[0, nmax]!
t[n_, 0] := 2 n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 24}]
PROG
(Python)
from itertools import count, islice, accumulate
from operator import sub
def A337444_gen(): # generator of terms
blist = tuple()
for i in count(1, 2):
yield (blist := tuple(accumulate(reversed(blist), func=sub, initial=i)))[-1]
A337444_list = list(islice(A337444_gen(), 30)) # Chai Wah Wu, Jun 11 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 27 2020
STATUS
approved