login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337447
E.g.f.: exp(exp(x) - 1) / (sec(x) + tan(x)).
1
1, 0, 1, 0, 4, -4, 31, -144, 379, -5560, 8572, -263128, 473485, -15744416, 47003477, -1206879556, 5944492012, -119190424496, 876847239971, -15100821637664, 149690044061351, -2416631748015804, 29675481449346820, -477579212590451988, 6840036862556737337
OFFSET
0,5
COMMENTS
Inverse boustrophedon transform of Bell numbers.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000110(k) * A000111(n-k).
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1]/(Sec[x] + Tan[x]), {x, 0, nmax}], x] Range[0, nmax]!
t[n_, 0] := BellB[n]; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 24}]
PROG
(Python)
from itertools import islice, accumulate
from operator import sub
def A337447_gen(): # generator of terms
yield from (1, 0)
blist, alist = (1, 0), (1, )
while True:
yield (blist := tuple(accumulate(reversed(blist), func=sub, initial=(alist := list(accumulate(alist, initial=alist[-1])))[-1])))[-1]
A337447_list = list(islice(A337447_gen(), 30)) # Chai Wah Wu, Jun 11-12 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 27 2020
STATUS
approved