login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256691 From fourth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is zeta function; sequence gives denominator of b(n). 11
1, 4, 4, 32, 4, 16, 4, 128, 32, 16, 4, 128, 4, 16, 16, 2048, 4, 128, 4, 128, 16, 16, 4, 512, 32, 16, 128, 128, 4, 64, 4, 8192, 16, 16, 16, 1024, 4, 16, 16, 512, 4, 64, 4, 128, 128, 16, 4, 8192, 32, 128, 16, 128, 4, 512, 16, 512, 16, 16, 4, 512, 4, 16, 128, 65536, 16, 64, 4, 128, 16, 64, 4, 4096, 4, 16, 128, 128, 16, 64, 4, 8192, 2048, 16, 4, 512, 16, 16, 16, 512, 4, 512, 16, 128, 16, 16, 16, 32768, 4, 128, 128, 1024 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Dirichlet g.f. of A256690(n)/A256691(n) is (zeta (x))^(1/4).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...
LINKS
FORMULA
with k = 4;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = denominator(b(n)).
EXAMPLE
b(1), b(2), ... = 1, 1/4, 1/4, 5/32, 1/4, 1/16, 1/4, 15/128, 5/32, 1/16, 1/4, 5/128, 1/4, 1/16, 1/16, 195/2048, ...
MATHEMATICA
k = 4;
c[1, n_] = b[n];
c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
t = Table[b[n], {n, 1, nn}] /. sol[[1]];
num = Numerator[t] (* A256690 *)
den = Denominator[t] (* A256691 *)
CROSSREFS
Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).
Sequence in context: A337447 A239601 A196131 * A120030 A138504 A002611
KEYWORD
nonn,frac,mult
AUTHOR
Wolfgang Hintze, Apr 08 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 10:21 EDT 2024. Contains 375092 sequences. (Running on oeis4.)