Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Apr 16 2015 15:26:27
%S 1,4,4,32,4,16,4,128,32,16,4,128,4,16,16,2048,4,128,4,128,16,16,4,512,
%T 32,16,128,128,4,64,4,8192,16,16,16,1024,4,16,16,512,4,64,4,128,128,
%U 16,4,8192,32,128,16,128,4,512,16,512,16,16,4,512,4,16,128,65536,16,64,4,128,16,64,4,4096,4,16,128,128,16,64,4,8192,2048,16,4,512,16,16,16,512,4,512,16,128,16,16,16,32768,4,128,128,1024
%N From fourth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is zeta function; sequence gives denominator of b(n).
%C Dirichlet g.f. of A256690(n)/A256691(n) is (zeta (x))^(1/4).
%C Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...
%H Wolfgang Hintze, <a href="/A256691/b256691.txt">Table of n, a(n) for n = 1..500</a>
%F with k = 4;
%F zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
%F c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
%F Then solve c(k,n) = 1 for b(m);
%F a(n) = denominator(b(n)).
%e b(1), b(2), ... = 1, 1/4, 1/4, 5/32, 1/4, 1/16, 1/4, 15/128, 5/32, 1/16, 1/4, 5/128, 1/4, 1/16, 1/16, 195/2048, ...
%t k = 4;
%t c[1, n_] = b[n];
%t c[k_, n_] := DivisorSum[n, c[1,#1]*c[k - 1, n/#1] & ]
%t nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
%t sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
%t t = Table[b[n], {n, 1, nn}] /. sol[[1]];
%t num = Numerator[t] (* A256690 *)
%t den = Denominator[t] (* A256691 *)
%Y Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).
%K nonn,frac,mult
%O 1,2
%A _Wolfgang Hintze_, Apr 08 2015