login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138504
Expansion of (eta(q^2)^9 / (eta(q)^2 * eta(q^4)^4))^2 in powers of q.
2
1, 4, -4, -32, -4, 104, 32, -192, -4, 292, -104, -480, 32, 680, 192, -832, -4, 1160, -292, -1440, -104, 1536, 480, -2112, 32, 2604, -680, -2624, 192, 3368, 832, -3840, -4, 3840, -1160, -4992, -292, 5480, 1440, -5440, -104, 6728, -1536, -7392, 480, 7592, 2112, -8832, 32, 9412, -2604, -9280
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(q) * phi(-q^2)^2)^2 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 4 sequence [ 4, -14, 4, -6, ...].
a(n) = 4 * b(n) where a(0) = 1, b(n) is multiplicative with b(2^e) = -1 if e>0, b(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 4), b(p^e) = ((-p^2)^(e+1) - 1) / ( -p^2 - 1) if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 32 (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A122854.
G.f.: 1 + 4 * Sum_{k>0} -(-1)^k * (2*k-1)^2 * x^(2*k-1) / (1 + x^(2*k-1)).
a(n) = (-1)^n * A120030(n). a(n) = 4 * A138505(n) unless n=0.
EXAMPLE
G.f. = 1 + 4*q - 4*q^2 - 32*q^3 - 4*q^4 + 104*q^5 + 32*q^6 - 192*q^7 - 4*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^9 / (QPochhammer[ q]^2 QPochhammer[ q^4]^4))^2, {q, 0, n}]; (* Michael Somos, May 24 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], -4 DivisorSum[ n, #^2 KroneckerSymbol[ -4, #] (-1)^(n/#) &]]; (* Michael Somos, May 24 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, -4 * sumdiv(n, d, d^2 * kronecker(-4, d) * (-1)^(n/d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 / (eta(x + A)^2 * eta(x^4 + A)^4))^2, n))};
CROSSREFS
Sequence in context: A196131 A256691 A120030 * A002611 A130188 A270676
KEYWORD
sign
AUTHOR
Michael Somos, Mar 21 2008
STATUS
approved