login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138501
Expansion of (eta(q)^2 * eta(q^4)^4 / eta(q^2)^3)^2 in powers of q.
2
1, -4, 8, -16, 26, -32, 48, -64, 73, -104, 120, -128, 170, -192, 208, -256, 290, -292, 360, -416, 384, -480, 528, -512, 651, -680, 656, -768, 842, -832, 960, -1024, 960, -1160, 1248, -1168, 1370, -1440, 1360, -1664, 1682, -1536, 1848, -1920, 1898, -2112, 2208, -2048, 2353, -2604
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * (phi(-q) * psi(q^2)^2)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 4 sequence [ -4, 2, -4, -6, ...].
a(n) is multiplicative with a(2^e) = -(4^e) if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 4), a(p^e) = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138502.
G.f.: x * (Product_{k>0} (1 - x^k)^3 * (1 + x^k) * (1 + x^(2*k))^4)^2.
a(n) = -(-1)^n * A050470(n).
EXAMPLE
G.f. = q - 4*q^2 + 8*q^3 - 16*q^4 + 26*q^5 - 32*q^6 + 48*q^7 - 64*q^8 + 73*q^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, #^2 Mod[n/#, 2] (-1)^Quotient[n/#, 2] &]]; (* Michael Somos, Aug 26 2015 *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^4]^4 / QPochhammer[ q^2]^3)^2, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, d^2 * (n / d % 2) * (-1)^(n / d \ 2)))};
(PARI) {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -4^e, f = (-1)^(p\2); ((p^2)^(e+1) - f^(e+1)) / (p^2 - f))))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n) ; polcoeff( (eta(x + A)^2 * eta(x^4 + A)^4 / eta(x^2 + A)^3)^2, n))};
CROSSREFS
Sequence in context: A013934 A167189 A050470 * A096296 A331243 A180861
KEYWORD
sign,mult
AUTHOR
Michael Somos, Mar 20 2008
STATUS
approved